FSP Maritime Systems

Spokesperson: Prof. Sören Ehlers, ehlers(a)tuhh.de

Deputy Spokesperson: Dr.-Ing. Marco Klein, marco.klein(a)tuhh.de

 

The maritime industry is a major national high-tech sector that operates successfully on a global scale in the fields of technology development, production, logistics and energy. In Germany, it comprises around 400,000 employees who generate an annual sales volume of around 50 billion euros (Report of the Federal Ministry for Economic Affairs and Energy on the Maritime Research Strategy 2025, page 4). The maritime industry is the logistical backbone of globalization with special significance for the port city of Hamburg.

Compared to land and air transport, maritime transport has the lowest CO2 footprint. Nevertheless, it is essential for climate protection to further reduce greenhouse gas and pollutant emissions, as maritime transport will increase by about 20 % by 2040, see BMWi report on the Maritime Research Strategy 2025 (page 5). In this context, it is necessary to base the intensive efforts to reduce greenhouse gas and pollutant emissions not on the current maritime transport volume, but to include the future impact on the environment due to the expected increase in maritime trade volume.  The FSP Green Maritime Technologies has long made an important contribution in this field.

Hamburg University of Technology is a leader in maritime research in Germany. In view of the challenges associated with the projected growth in maritime traffic, it is faced with the task of developing and introducing new technical solutions together with industry. On the one hand, this includes holistic developments of new environmentally friendly fuels, ship propulsion systems and structures, and materials. On the other hand, developments focus on ensuring the safety of people, ships and offshore structures, taking into account increasingly extreme weather events resulting from global warming.

The integration of "machine learning" methods and digitalization into the design and manufacturing process of maritime structures as well as into ship operation is the subject of research at TUHH, which requires corresponding strategic adjustments in education and research. Technological progress will enable autonomous navigation in the future, with far-reaching effects on the global economy and the environment.

For these reasons, the following research areas are in focus in TUHH's maritime field: shaping the energy transition in the maritime transport sector, expanding offshore wind capacity, improving maritime security, fully digitalized manufacturing, machine learning, Big Data, and autonomy capability above and below water. In addition to quite a few individual DFG projects, basic research includes member participation in various DFG-funded research training groups such as GRK 1096 "Seaports for Container Ships of Future Generations" and GRK 2462 "Processes in Natural and Engineered Particle-Fluid-Structure Interactions" (PintPFS).

In collaboration with the maritime industry, numerous research topics are being addressed to increase safety and economic efficiency as well as the environmental performance of ships and offshore structures. These research topics are funded by the European Union, the German Federal Ministry for Economic Affairs and Energy (BMWi), the German Federation of Industrial Research Associations (AIF), the Hanseatic City of Hamburg and the Hamburg Port Authority Hamburg (HPA), among others.

The master's degree programs in Shipbuilding and Ocean Engineering, Ship and Offshore Technology, Energy Engineering/Specialization in Marine Engineering, Theoretical Mechanical Engineering, Civil Engineering and Renewable Energies benefit from the close networking of basic and industry-related research.

Prof. Sören Ehlers
Dr.-Ing. Marco Klein

Research Center News

Current Projects (Highlights)
Cooperations (Highlights)
Publications (Highlights)