Eine Beschichtung, die sich beim Trocknen elektrisch auflädt und Strom erzeugt. Grundlage bilden unzählige winzige Poren und elektrische Spannung. An der Verwirklichung dieses Konzepts forscht ein EU-Projekt unter Beteiligung der TU Hamburg.
Eine Kaimauer in einem Seehafen, ihre Oberfläche ist mit einem faszinierenden Material beschichtet: Bei Flut wird es feucht, und in seinem Inneren werden elektrische Ladungen voneinander getrennt. Läuft das Wasser dann mit der Ebbe ab, trocknet das Material, lädt sich dabei elektrisch auf und erzeugt grünen, CO2-freien Strom. Noch ist das nur eine Vision, noch gibt es dieses Wundermaterial nicht. Doch seit kurzem tüftelt ein internationales Forschungsteam an den Grundlagen dafür: Im EU-Projekt EHAWEDRY soll in einigen Jahren ein erster Prototyp der neuen Energietechnik entstehen.
Als Grundlage dienen elektrisch leitfähige Materialien, die mit winzigen Poren gespickt sind. „Wir verwenden Kohlenstoff oder Silizium, in die wir mit elektrochemischen Ätzprozessen nanometerkleine Poren einbringen“, sagt Prof. Patrick Huber, Leiter des Instituts für Material- und Röntgenphysik der Technischen Universität Hamburg und der Arbeitsgruppe „Hochauflösende Röntgenanalytik von Materialien“ bei DESY in Hamburg. Unter dem Mikroskop ähnelt das Resultat einem Schwamm. Allerdings sind die Poren nicht millimetergroß, sondern rund eine Million Mal kleiner. Das Faszinierende dabei: Ein Kubikzentimeter eines solchen Materials enthält dermaßen viele Poren, dass sich – könnte man es komplett entfalten – eine fußballfeldgroße Fläche vor einem ausbreiten würde.
Es kommt zur Teilchenwanderung
Wird dieser Nanoschwamm, zum Beispiel durch die Flut im Hafen, mit Wasser befeuchtet, in dem Kochsalz (Natriumchlorid) gelöst ist, werden die Poren mit Milliarden von Molekülen geflutet. Legt man dann eine kleine positive Spannung an den Schwamm an, wandern die negativ geladenen Chlorionen an die Porenwände und lagern sich dort an. „Im Wasser zurück bleiben die positiven Natriumionen“, erläutert Huber. „Damit erfolgt eine Ladungstrennung ähnlich wie bei einem Kondensator, der aufgeladen wird.“ Lässt man das Gebilde anschließend trocknen, passiert der entscheidende Effekt: Die Ladungen in seinem Inneren müssen sich neu arrangieren und werden dabei gewissermaßen verdichtet. Dadurch steigt die elektrische Spannung im Material, was sich zur Stromgewinnung nutzen lässt. Bei jeder Flut beginnt der Zyklus von vorne: Das Nanomaterial wird erneut befeuchtet, um dann wieder zu trocknen und Energie zu erzeugen. Aufgrund der enormen Porenzahl und der daraus resultierenden riesigen inneren Oberfläche könnte das durchaus effektiv geschehen: Abschätzungen zufolge sollte ein Volumen von einem Kubikmeter Nanoschwamm mehr als zehn Kilowatt elektrische Leistung liefern.
In Fassaden integrieren
Mit dem porösen Werkstoff eine Kaimauer zu beschichten, um die Gezeiten zu nutzen, wäre aber nur eine Anwendungsidee. „Noch effizienter könnte es sein, Aggregate aus unserem Material zu bauen, durch die eine Flüssigkeit in einem geschlossenen Kreislauf strömt“, glaubt Huber. „Als Energiequelle für das Trocknen könnte dann die bislang ungenutzte Abwärme aus Industrieanlagen oder Rechenzentren dienen.“ Auch heiße Regionen würden sich eignen – die sengende Sonne könnte die in Fassaden integrierten, künstlich befeuchteten Nanoschwämme im Nu trocknen und für eine regelmäßige Stromernte sorgen.
In den kommenden Jahren will das Team um Patrick Huber die Forschungsfragen beantworten im Rahmen des Zentrums für Integrierte Multiskalige Materialsysteme (CIMMS), das derzeit in der Metropolregion Hamburg als Zusammenarbeit zwischen der Technischen Universität Hamburg, der Universität Hamburg, des Helmholtz-Zentrums Hereon und DESY entsteht. „Gegen Ende von EHAWEDRY möchte unser Team einen ersten Prototyp präsentieren“, umreißt der Physiker das Projektziel. „Danach dann hoffen wir, dass industrielle Partner gemeinsam mit uns die Sache weiterverfolgen.“
Quelle: DESY/femto