Forschungsbericht 2011



iCap - Innovative CO2 Capture

Institut: M-5
Projektleitung: Alfons Kather
Mitarbeiter/innen: Sebastian Gellert
Ulrich Liebenthal
Niels Woltersdorf
Christian Mehrkens
Imo Pfaff
Laufzeit: 01.01.2010 — 31.12.2013
Finanzierung:Europäische Union (EU)
Kooperationen:ARMINES, Frankreich
CSIRO, Australien
Danmarks Teknisk Universitet - DTU, Dänemark
DONG ENERGY POWER AS, Dänemark
EnBW Kraftwerke AG
IFP Energies nouvelles, Frankreich
Norges Teknisk-Naturvitenskapelige Universitet, Norwegen
Procede Group BV, Niederlande
STIFTELSEN SINTEF, Norwegen
TNO, Niederlande
Tsinghua University, China
Vattenfall A/S, Schweden
Vattenfall Research and Development AB, Schweden
Internationalisierung:Australien, China, Dänemark, Frankreich, Niederlande, Norwegen, Schweden
URL: https://www.tuhh.de/iet/forschungsprojekte/eu-icap.html

A main bottleneck in post-combustion CO2 capture causing significant reduction in power plant efficiency and preventing cost effectiveness is the low flue gas CO2 partial pressure, limiting membrane flux, solvent selection and capacity. In pre-combustion CO2 capture instead, key bottlenecks are the number of processing steps, the possible low hydrogen pressure and the high hydrogen fraction in the fuel. Global deployment of CO2 capture is restrained by a general need for prior removal of SO2. The project iCap within the 7th Framework Programme of Research of the European Union seeks to remove these barriers by developing new technologies with potential for reducing the current energy penalty to 4-5% points in power plant efficiency, to combine SO2 and CO2 removal and thus reduce the avoidance cost down to 15 €/tonne CO2.

iCap will develop solvents forming CO2 hydrates or two liquid phases enabling drastically increased liquid phase CO2 capacity, radically decreasing solvent circulation rates, introducing a new regime in desorption energy requirement and allowing CO2 desorption at elevated pressures. Furthermore, it will develop combined SO2 and CO2 capture systems increasing dramatically the potential for large scale deployment of CCS in the BRIC countries and for retrofitting in Europe. It will also develop high permeability/high selectivity low temperature polymer membranes, by designing ultra-thin composite membranes from a polymeric matrix containing ceramic nano-particles.

Another target is to develop mixed proton-electron conducting dense ceramic-based H2 membranes offering the combined advantages of theoretically infinite selectivity, high mechanical strength and good stability. On the basis of these developments novel coal and gas-based power cycles will be evaluated that allow post-combustion CO2 capture at elevated pressures, thus reducing the separation costs radically. These technologies will integrate improved separation technologies into brownfield and greenfield power plants and will yield novel power cycles, in order to meet the performance and cost targets of the project.

In carrying out its research in iCap the Institute of Energy Systems has also undertaken the leadership of Work Package 5: Technology evaluation, cost and efficiency estimations.

Stichworte

  • Abscheidung von CO2
  • Carbon Capture and Storage
  • CO2-Abscheidung
  • CO2-Abtrennung
  • CO2-Emissionsminderung
  • CO2-Hydrate
  • CO2-Reduzierung
  • Dampfkraftwerk
  • Fossil befeuerte Kraftwerke
  • Kohlebefeuerte Kraftwerke
  • Kombinierte CO2 und SO2-Abtrennung
  • Kraftwerk
  • Kraftwerksprozesse
  • Kraftwerkstechnik
  • Modellierung von Kraftwerken
  • Moderne Stromerzeugung
  • Post-Combustion
  • Post-Combustion CO2 Capture
  • Simulation von Kraftwerken
  • Steinkohle Dampfkraftwerk
  • Stromerzeugung
  • Umweltaspekte der Stromerzeugung
  • Umweltbelastungen aus CO2-armen Kraftwerken

Publikationen

  • Kather, A.; Oexmann, J.; Liebenthal, U.; Linnenberg, S.: Using Overall Process Simulation to Minimize the Energy Penalty of Post-Combustion CO2 Capture Processes in Steam Power Plants. In 35th International Technical Conference on Clean Coal & Fuel Systems, Clearwater, FL, USA, 2010.