Environmental & Energy Systems

Coupling energy networks - concept for tomorrow

Steckbrief

Researcher             Prof. Christian Becker

                              Prof. Arne Speerforck

                              Prof. Kathrin Fischer

                              Prof. Volker Turau

Duration                12-2019 – 11-2022

Institute                 Electrical Power and Energy Technology

                              Engineering Thermodynamics

                              Operations Research and Information Systems

                              Telematics

School of Studies   Electrical, Engineering, Computer Science and Mathematics (E)

                               Process and Chemical Engineering (V)

                               Management Sciences and Technology (W)

Global climate targets call for rapid decarbonization of energy generation and increasing integration of renewable energies. But the wind doesn't always blow or the sun doesn't always shine. To ensure a secure supply, electricity, gas and heat grids must be coupled.

On the one hand, the energy system of the future will be determined by the increasing electrification of the consumption sectors of transport, industry, commerce and households. On the other hand, the volatility of renewable energy generation and the different dynamics of energy consumption require a high degree of flexibility and thus energy storage capacity of the overall system. This is the only way to ensure a resilient energy supply. It succeeds when the systems and networks of the energy carriers electricity, gas and heat are coupled with each other. And at the same time, intelligent networking takes place to control the plants, generators and consumers of the energy system. The idea is to convert energy flexibly between the energy carriers according to demand, for example, to convert energy from renewable electricity production into another form of energy, store it on a larger scale and convert it back into electricity when needed.

Ensuring grid stability

An example of such coupling effects is the use of cogeneration plants that feed energy into both the heat and electricity grids. For example, if there is a high demand for heat and at the same time a large supply of electrical energy, these plants cannot be down-regulated to ensure that the heat demand is met. This may result in less power being fed in from renewable energy sources such as offshore wind farms to ensure the stability of the electrical power grid. The transient, i.e. temporary, consideration also creates the possibility of creating a temporal balance through the targeted use of storage technologies. These considerations can also be used to answer the question of what type of storage, in what size, and at what location are sensibly deployed.

Reliably integrating renewables

Based on different scenarios using the model just described, we will look for ways to reliably integrate renewables into an existing energy supply structure. The final evaluation of the different scenarios is based on the CO2 emissions per year, which allows a direct conclusion on the goals of the energy transition. The results of this research contribute to securing society's growing energy needs and to the greatest possible environmental and climate compatibility.

Example projects with TU Hamburg participation:

TransiEntEE: Transient behavior of coupled energy grids with a high share of renewable energies, ResiliEntEE: Resilience of coupled energy grids with a high share of renewable energies, CyEntEE: Cyber Physical Energy Systems - Sustainability, Resilience and Econimics, funded as I³-Lab of TU Hamburg, EffiziEntEE: Efficient integration of high shares of renewable energies in technical-economic integrated energy systems, iNeP in NRL: Integrated Network Planning of the Sectors Electricity, Gas and Heat in the North German Real Lab.