DE
Menü öffnen

Measurement Technology for Mechanical Engineers (MT)

Credit points : 6 ECTS (3 Interactive lectures + 3 Project-based learning)
Offer : Lecture and experiments in the winter semester + option to do the experiments in the summer semester
Language : English
Level : Bachelor

General description

How do we know if a machine runs as intended? How do engineers quantify forces, temperatures, flows, or vibrations—and ensure those numbers are trustworthy?

Measurement Technology (MT) gives you the tools to answer these questions by bridging theory, sensors, and hands-on experimentation. The course begins with the foundations of measurement science—units, calibration, uncertainty, error analysis—before moving into the design and use of real-world measurement systems. You’ll explore electrical, optical, capacitive, inductive, piezoelectric, and other sensing technologies, learning how they transform physical phenomena into reliable digital data.

This isn’t just theory on a blackboard. Through dedicated laboratory experiments and project-based learning, you’ll work directly with instruments, conduct experiments, analyze results, and present your findings. By the end, you’ll not only know how to select and apply the right measurement method for a given problem, but also gain the confidence to adapt to new technologies and measurement challenges.

Whether your future lies in research, product development, or industrial applications, Measurement Technology equips you with essential skills to design, validate, and push the boundaries of mechanical engineering systems.

Learning objectives

  • Students are able to name the most important fundmentals of the Measurement Technology (Quantities and Units, Uncertainty, Calibration, Static and Dynamic Properties of Sensors and Systems).
  • They can outline the most important measuring methods for different kinds of quantities to be measured (Electrical Quantities, Temperature, mechanical quantities, Flow, Time, Frequency).
  • Students can select suitable measuring methods to given problems and can use refering measurement devices in practice.
  • The students are able to orally explain issues in the subject area of measurement technology and solution approaches as well as place the issues into the right context and application area.
  • Students can arrive at work results in groups and document them in a common report.
  • Students are able to familiarize themselves with new measurement technologies.

How you'll learn

  • Lectures: Structured explanation of core concepts with live demonstrations and visuals
  • Experiments / Problem-Based Learning: Hands-on problems, design tasks, and simulation challenges using tools like MATLAB, SolidWorks Motion, or similar platforms

Semester structure

Teaching format: Lecture (1.5 hours/week) during the winter semester

Examination: Eleven experiments to conduct individually in the Working Lab either during the winter or summer semester (2 hours / experiment + preparation and processing time). MSR labs need to be conducted as well (can be done in a different semester). 

Materials: Lecture slides, lecture recordings, and teaching videos via StudIP;  experiments online in Confluence

Consultation hours: by appointment

Structure of the lecture

Measurement Theory & error analysis

  • Motivation
  • Units
  • Calibration
  • Terminology
  • Notation in Scientific context
  • Fundamental ways of measuring
  • Statistical analysis
  • Dynamic errors

Electrical Measurement Technology:

  • From measurand to quantified digital value
  • Operational amplifiers
  • Voltage and current measurement
  • Signals, frequency
  • Bode plots
  • Analog filters
  • Potentiometer
  • Analog to digital conversion
  • Digital data acquisition & processing

Resistive Sensors

  • Basics of Electrical Engineering
  • Types of technical resistors
  • Resistance → Sensors
  • Physical impacts on parameters relevant for resistance
  • Types of measurements by resistance: Temperature, Length, Shape, Force, Acceleration,...
  • Resistive bridges - Wheatstone-Bridge

Capacitive Effects and Sensors

  • Capacitive effect
  • Capacitive sensor
  • Applications: Touchscreen, Liquids, Sound, Inertia, Touch

Optical Sensors

  • Introduction to optics:
    • What is light: photons, waves, rays
    • Definitions
    • Wavelengths
    • Material properties
    • Reflection, Refraction, Critical Angle, Lenses
    • Steradian unit
    • Radiation
    • Human eye, Color Perception, Luninous-Density
  • Light sources
  • Light sensors:
    • Types: Photo-resistor, Photo-diode, Photo-transistor
    • Applications: Position, Intensity, Triangulation, Encoders, Interferometric Detection, Distance,...
    • Cameras
    • Fibre-Bragg Gratings
    • Thermographic Imaging

Special Sensors (technology, applications, resolution, noise, circuits…):

  • Ultrasonic Sensors
  • Radar-Technology
  • Magnet Resonance Tomography
  • Heart related measurements: ECG-based measurements, optical pulse, oxymetric, blood pressure)

Inductive & Magnetic Sensors

  • Introduction to magnetic field formation
  • Concept of magnetic flux
  • Inductive & Magnetic Sensors:
    • Intensity of a magnetic field
    • Hall-Effect Sensors
    • Counting
    • Inductivity
    • Transformer with varying coupling
    • Eddy-current
    • Movement of a conductor in a magnetic field (induction)
    • Force-sensitive materials (magnetoeleastic/magnetostrictive)
  • Special sensors:
    • Inductive Positioning Sensor
    • Electromagnetic flow sensors
    • Salinity sensors
    • Testing of magnetic material properties

Piezoelectric Sensors

  • Piezoelectric principle
  • Materials
  • Piezoelectric Sensor Design:
    • Force sensors
    • Frequency characteristics
    • Acceleration
  • Circuits:
    • Voltage Amplifier
    • Charge Amplifier
    • Internal and External Amplifiers
    • Typical characteristics

Experiments

The "MT Experiments/MT Lab" involves ten mandatory experiments and one optional experiment, designed to familiarise you with using hand multimeters and oscilloscopes, before you need to use these in experiments 2–10. To pass each experiment, you need to follow four steps:

  1. Preparation
  2. Reservation
  3. Execution
  4. Evaluation

The ten experiments are:

  • 1. mechanical measurements
  • 2. motor power
  • 3. resistive I: potentiometers
  • 4. resistive II: strain-gauge & Wheatstone-bridge
  • 5. capacitive I: general
  • 6. capacitive II: acceleration
  • 7. optical I: light reflection switch
  • 8. optical II: diodes/phototransistors/photoresistors
  • 9. magnetic: hall-sensor
  • 10. piezo-electric

The optional one is:

  • 0. Electrical Measurement Equipment

How to reach us

We have set up a forum on the StudIP e-learning platform for general questions, as well as questions about lecture content and experiments. If your question isn't answered there, or if you would like to contact us in another way, you can send us an email to our team email address imek-mt(at)tuhh.de. 

Teaching staff

Ornella Tortorici Pabst
M-4 Mechatronik im Maschinenbau
  • Mechatronik im Maschinenbau
Eißendorfer Straße 38 (O),
21073 Hamburg
Gebäude O, Raum O-014
Logo
Prof. Dr.-Ing. Thorsten A. Kern
M-4 Mechatronik im Maschinenbau
  • Mechatronik im Maschinenbau
Sprechzeiten
nach Vereinbarung
Eißendorfer Straße 38 (O),
21073 Hamburg
Gebäude O, Raum 0011
Tel: +49 40 42878 4204
Logo
Finn Jannek Klar
M-4 Mechatronik im Maschinenbau
  • Mechatronik im Maschinenbau
Eißendorfer Straße 38 (O),
21073 Hamburg
Gebäude O, Raum 0.016
Tel: +49 40 42878 2812
Logo
Juliana Lüer
M-4 Mechatronik im Maschinenbau
  • Veritaskai 1
  • 21079 Hamburg
Eißendorfer Straße 38 (O),
21073 Hamburg
Gebäude O, Raum 0.014
Tel: +49 40 30601 2830
Logo
Dr.-Ing. Dennis Kähler
M-4 Mechatronik im Maschinenbau
  • Mechatronik im Maschinenbau
Eißendorfer Straße 38 (O),
21073 Hamburg
Gebäude O, Raum 0012
Tel: +49 40 42878 4206
Logo
Folke Schwinning
M-4 Mechatronik im Maschinenbau
  • Mechatronik im Maschinenbau
Eißendorfer Straße 38 (O),
21073 Hamburg
Gebäude O, Raum 0.015
Tel: +49 40 42878 4211
Logo

Experiments designers

Jana Ihrens
M-4 Mechatronik im Maschinenbau
  • Mechatronik im Maschinenbau
Eißendorfer Straße 38 (O),
21073 Hamburg
Gebäude O, Raum 013
Tel: +49 40 42878 4210
Logo
Fady Youssef
M-4 Mechatronik im Maschinenbau
  • Mechatronik im Maschinenbau
Eißendorfer Straße 38 (O),
21073 Hamburg
Gebäude O, Raum 0.014
Tel: +49 40 42878 2027
Logo
Prof. Dr.-Ing. Thorsten A. Kern
M-4 Mechatronik im Maschinenbau
  • Mechatronik im Maschinenbau
Sprechzeiten
nach Vereinbarung
Eißendorfer Straße 38 (O),
21073 Hamburg
Gebäude O, Raum 0011
Tel: +49 40 42878 4204
Logo
Finn Jannek Klar
M-4 Mechatronik im Maschinenbau
  • Mechatronik im Maschinenbau
Eißendorfer Straße 38 (O),
21073 Hamburg
Gebäude O, Raum 0.016
Tel: +49 40 42878 2812
Logo
Alireza Abbasimoshaei
M-4 Mechatronik im Maschinenbau
  • Mechatronik im Maschinenbau
Eißendorfer Straße 38 (O),
21073 Hamburg
Gebäude O, Raum 0.015
Tel: +49 40 42878 3083
Logo
Folke Schwinning
M-4 Mechatronik im Maschinenbau
  • Mechatronik im Maschinenbau
Eißendorfer Straße 38 (O),
21073 Hamburg
Gebäude O, Raum 0.015
Tel: +49 40 42878 4211
Logo
Ornella Tortorici Pabst
M-4 Mechatronik im Maschinenbau
  • Mechatronik im Maschinenbau
Eißendorfer Straße 38 (O),
21073 Hamburg
Gebäude O, Raum O-014
Logo
Tom Liebing
M-4 Mechatronik im Maschinenbau
  • Mechatronik im Maschinenbau
Eißendorfer Straße 38 (O),
21073 Hamburg
Gebäude O, Raum 0.016
Tel: +49 40 42878 4207
Logo