Lennard Lindmüller

Lennard Lindmüller

Hamburg University of Technology
Solids Process Engineering and Particle Technology
Denickestraße 15 (K)
21073 Hamburg
Building K
Room 2505
Tel: +49 40 42878 2437

Research project

This research project is about the Chemical Looping Combustion (CLC) process, which is a promising combustion technology for power generation and industrial applications with inherent CO2 capture. In CLC, metal oxide particles transfer the oxygen from air to the fuel. Since the fuel and air are never mixed during the combustion, CO2 and steam are generated without gas separation. In comparison to other CO2 capture technologies, the costs and energy penalty of gas separation are avoided.

The focus in my research project is on the flowsheet simulation of an entire CLC system. The simulations are validated with experiments on a 25 KWth CLC pilot plant at our institute. Further information can be found in the project description:

Dynamic Flowsheet Simulation of Solids Processes for Chemical Looping Combustion


  • Haus, J.; Lindmüller, L.; Dymala, T.; Jarolin, K.; Feng, Y.; Hartge, E.-U.; Heinrich, S.; Werther, J.(2020) Increasing the efficiency of chemical looping combustion of biomass by a dual-stage fuel reactor design to reduce carbon capture costs. Mitig Adapt Strateg Glob Change , 65, 6, doi:10.1007/s11027-020-09917-2
  • Lindmüller, L.; Haus, J.; Hartge, EU.; Heinrich S. (2020) Dynamic Modelling of Reactive Fluidized Bed Systems Using the Example of the Chemical Looping Combustion Process for Solid Fuels. In: Heinrich S. (eds) Dynamic Flowsheet Simulation of Solids Processes. Springer, Cham. https://doi.org/10.1007/978-3-030-45168-4_2

Thesis Offerings

For our experimental and simulation work, we are continuously offering Master, Bachelor and Project Theses. So if you are interested in working with this innovative process, contact us or come by our institute! We will then discuss a suitable topic for your thesis.