EN
Open menu

Moritz Hollenberg, M. Sc.

 

Hamburg University of Technology

Institut for Mechatronics in Mechanics (M-4)

Building O (Eißendorfer Str. 38)

Room 015

moritz.hollenberg@tuhh.de

 

 

 


Research Area

My research focuses on the numerical modeling and analysis of impedance-based sensing systems, with a particular emphasis on electrical impedance tomography (EIT). I combine forward and inverse modeling, hardware-level simulations, and advanced regularization techniques to better understand and improve imaging and sensing performance. Using self-implemented finite element studies and multiphysical simulation, I study the influence of sensor geometry, electrode configurations, and noise on measurement quality and reconstruction outcomes.

On the hardware side, I explore high-speed data acquisition and signal generation with FPGAs to build high-speed data pipelines. 

A further focus is the integration of physics-informed machine learning approaches (e.g., PINNs) into dynamic reconstruction problems, allowing physical laws such as heat diffusion to be incorporated into data-driven methods.

Overall, my research aims to advance the numerics of impedance-based sensor design by combining computational modeling, hardware validation, and machine learning approaches to enable more robust, accurate, and versatile sensing systems.

Supervised Theses

2025

  • Lagidi, P. (Projekt Work): Design and Implementation of an Architecture for FPGA-Based High-Speed Data Transfer and Machine Learning for Real-Time Image Reconstruction in a 3D EIT System
  • Grabow, B. (Master Thesis): Entwicklung und Simulation eines energieeffizienten Wickel-Aktors für eine Höhenwindenergieanlage
  • Prabhuswamy, H. (Master Thesis): Development and Implementation of Advanced Signal Extraction Techniques for FPGA-based Systems
  • Da Veiga Leal, I. (Bachelor Thesis): Comparative Analysis of Neural Network Architectures for Electrical Impedance Tomography (EIT)

2024

  • Schlack, J. A. (Bachelor Thesis): Automated simulation of EIT measurements in COMSOL with variable parameters

CV

seit 11/2023Wissenschaftliche Mitarbeiterin, Technische Universität Hamburg, Institut für Mechatronik im Maschinenbau
10/2017 - 06/2020

Application Consultant DevOps bei IBM Deutschland GmbH

04/2021 - 01/2023M. Sc. Mathematik, Technische Universität Berlin, Thesis: Entropic Wasserstein Gradient Flows

04/2019 - 03/2021

Studentische Hilfskraft, Technisiche Universität Berlin
04/2017 - 02/2022B. Sc. Mathematik, Technische Universität Berlin, Thesis: Concentration of Shallow ReLU Networks