current projects


Systematic Multiscale Modeling and Design Concept for SMART Reactors

In this subproject B06 of the Collaborative Research Center SMART reactors, superstructure optimization approaches and Computational Fluid Dynamics (CFD) simulations will be used for multiscale optimization to maximize the potential of novel adaptive materials. Crucial in this context is the linkage between expensive high-resolution CFD models and systemic models accessible for direct mathematical optimization. The overarching goal of this project is the design of flexible SMART reactors with optimally controlled reaction conditions.

Analysis of thermally coupled distillation sequences without vapor transfer (Liquid-Only-Transfer)

Liquid-only-transfer (LOT) sequences are an innovative adaptation of conventional thermally coupled distillation sequences. They are characterized by not requiring a vapor transfer stream between columns, making both design and operation simpler and more flexible. The goal of this project is to comprehensively analyze LOT sequences in a model-based and experimental manner to determine the potential of these sequences, validate the advantages, and generate process understanding.

 


Optimization of Structured Packings for Thermal Separation Columns

The aim of this project is the design of novel structured packings for thermal separation columns. The structure of the packing is mathematically optimized with regard to the expected performance based on the structured packing in gas-liquid contact with the aid of simulation calculations. In a further step, the designed packings are analyzed experimentally with respect to different performance parameters.

 


Automatische Synthese destillationsbasierter Prozesse für die Trennung azeotroper Mehrstoffgemische

Ziel des Forschungsvorhabens ist die Entwicklung einer automatischen Generierung destillationsbasierter Prozesse, die allein auf einer thermodynamsichen Beschreibung des Phasenverhaltens eines aufzutrennenden Mehrstoffgemsiches aufbaut. Durch ein rein algorithmische Ableitung von alternativen Fließbildern unter Berücksichtigung von Trenngrenzen und Druckänderung wird eine automatische Fließbildgenerierung auch für azeotrope Mehrstoffgemsiche ermöglicht, welche bislang nur durch aufwendige Simulationsstudien, oder die grafische Analyse von Konzentrationsdiagrammen ternärer Teilsysteme abgeleitet werden.

Kooperationspartner: Lehrstuhl für Fluidverfahrenstechnik, TU Dortmund


Energy-Integrated Distillation Processes

In light of rising energy prices and in order to reduce the emission of greenhouse gases, it is essential to increase the efficiency of distillation processes. As such, this research project focuses on the evaluation of innovative energy-integrated distillation processes in terms of energetic, economic and environmental criteria in the context of a developing chemical industry. Depending on the specific separation task, different improvement measures such as thermal coupling, heat integration or the use of heat pumps can be considered in addition to various column configurations for separation into multiple fractions. Accordingly, the most efficient process alternative must be evaluated from a wide variety of options. To achieve this, shortcut screening based on rigorous thermodynamics is applied in conjunction with rigorous optimization.


Multienzymkaskade im 2-Phasensystem - Prozessintegration

Die Bedeutung der Biotechnologie in der chemischen Industrie nimmt kontinuierlich zu. Dies gilt insbesondere für komplexe Moleküle in der Feinchemie, bei denen Enzymkaskaden eine vielversprechende Lösung für selektive Synthesen bieten. Allerdings sind biochemische Prozesse im Vergleich zu herkömmlichen Verfahren eher langsam. Um dieser Herausforderung zu begegnen, kann eine Prozessintensivierung in Form von Prozessintegration hilfreich sein. In diesem Projekt wird erstmals eine dreiphasige (flüssig/flüssig/fest) reaktive Extraktionszentrifuge in Betrieb genommen. Durch die Integration einer enzymatischen Reaktion entsteht eine einzigartige enzymatische reaktive Extraktionszentrifuge.

Kooperationspartner: Institut für Technische Biokatalyse, TU Hamburg

Gefördert durch: Deutsche Forschungsgemeinschaft seit 2021


Development and experimental validation of a molecular dynamics simulation method for the prediction of adsorption isotherms of proteins

The production of proteins as biopharmaceuticals is a significant and expanding area of the pharmaceutical industry. Currently, biopharmaceuticals are purified by various chromatographic methods after fermentative production. However, the development of these methods requires elaborate experimental investigations. In this project, experimental methods and molecular dynamics (MD) simulations are closely combined to characterise the ion exchange adsorption of biopharmaceuticals in order to reduce the development costs of downstream processing.

Cooperation partner: Institut für Thermische Verfahrenstechnik, TU Hamburg; Institut für chemische Reaktionstechnik, TU Hamburg

Sponsored by: Deutsche Forschungsgemeinschaft since 2021