Prof. Dr.-Ing. Mirko Skiborowski

(Head of institute)

Am Schwarzenberg-Campus 4 (C)

21073 Hamburg

Building: C - Room: 3.002

eMail: Prof. Dr.-Ing. Skiborowski

Phone: ++49 (0)40 42878-3041

Personal information

born 1982 in Moers

2003-2009

Study of Computational Enggineering Science (Dipl.-Ing.), RWTH Aachen, Germany

2009-2014

Research assistent, Aachener Verfahrenstechnik - Process Systems Engineering, RWTH Aachen, Germany

2015

Doctoral thesis (Dr.-Ing.) with distinction, supervisor Wolfgang Marquardt, RWTH Aachen, Germany

2014-2020

Academic councillor and group leader, Laboratory of Fluid Separations, Dortmund University of Technology, Germany

2019

Habilitation and Venia Legendi in Fluid Separations, Dortmund University of Technology, Germany

seit 2020

Ordentlicher Professor (W3) und Leiter des Instituts für Systemverfahrenstechnik, Hamburg University of Technology, Germany

Research

Process intensification - experimental analysis and model-based evaluation

  • Combination/Integration of reaction and separation (reactive absorption and distillation, membrane reactors)
  • Hybrid separation processes (membrane- and solvent-assisted separation processes)
  • Innovative separation processes (Rotating Packed Beds and organic solvent nanofiltration)
  • Additive manufacturing (development of packings through 3D printing)

Mathematical modelling, simulation and optimization of (bio-)chemical production processes

  • Modelling (Model discrimination and parameter estimation, model reduction and hybrid models)
  • Process synthesis (automatic thermodynamic-based flowsheet generation)
  • Optimization-based process design (polylythic modelling and solution appraoch, hybrid optimization methods)

Publications

article

  • Barecka, M.;Jaberi, M.;Skiborowski, M.;Gorak, A. (2016). Debottlenecking of chemical processing through Process Intensification: Ethylene glycol case study. 22nd International Congress of Chemical and Process Engineering, CHISA 2016 and 19th Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction, PRES 2016. 2. [www]

  • Barecka, M.;Skiborowski, M.;Gorak, A. (2016). A methodology for process debottlenecking by process intensification: Application to ethylene oxide production. Computing and Systems Technology Division 2016 - Core Programming Area at the 2016 AIChE Annual Meeting. [www]

  • Barecka, M.;Skiborowski, M.;Gorak, A. (2017). A novel approach for process retrofitting through process intensification: Ethylene oxide case study. Chemical Engineering Research and Design. 123. 295--316 [doi] [www]

  • Bertleff, B.;Goebel, R.;Claußnitzer, J.;Korth, W.;Skiborowski, M.;Wasserscheid, P.;Jess, A.;Albert, J. (2018). Investigations on Catalyst Stability and Product Isolation in the Extractive Oxidative Desulfurization of Fuels Using Polyoxometalates and Molecular Oxygen. ChemCatChem. 10. (20), 4602--4609 [doi] [www]

  • Brunazzi, E.;Cai, T.;Kiss, T.;Repke, J.-U.;Skiborowski, M.;Sorensen, E. (2019). Distillation & Absorption 2018. Chemical Engineering Research and Design. 147. 603 [doi] [www]

  • Böcking, A.;Koleva, V.;Wind, J.;Thiermeyer, Y.;Blumenschein, S.;Goebel, R.;Skiborowski, M.;Wessling, M. (2019). Can the variance in membrane performance influence the design of organic solvent nanofiltration processes?. Journal of Membrane Science. 575. 217--228 [doi] [www]

  • Dreimann, J. M.;Hoffmann, F.;Skiborowski, M.;Behr, A.;Vorholt, A. J. (2017). Merging Thermomorphic Solvent Systems and Organic Solvent Nanofiltration for Hybrid Catalyst Recovery in a Hydroformylation Process. Industrial and Engineering Chemistry Research. 56. (5), 1354--1359 [doi] [www]

  • Dreimann, J. M.;Skiborowski, M.;Behr, A.;Vorholt, A. J. (2016). Recycling Homogeneous Catalysts Simply by Organic Solvent Nanofiltration: New Ways to Efficient Catalysis. ChemCatChem. 8. (21), 3330--3333 [doi] [www]

  • Dreimann, J. M.;Vorholt, A. J.;Skiborowski, M.;Behr, A. (2016). Removal of homogeneous precious metal catalysts via Organic solvent nanofiltration. Chemical Engineering Transactions. 47. 343--348 [doi] [www]

  • Gladyszewski, K.;Groß, K.;Bieberle, A.;Schubert, M.;Hild, M.;Gorak, A.;Skiborowski, M. (2021). Evaluation of performance improvements through application of anisotropic foam packings in rotating packed beds. Chemical Engineering Science. 230. [doi] [www]

  • Gladyszewski, K.;Skiborowski, M. (2018). Additive manufacturing of packings for rotating packed beds. Chemical Engineering and Processing - Process Intensification. 127. 1--9 [doi] [www]

  • Goebel, R.;Glaser, T.;Niederkleine, I.;Skiborowski, M. (2018). Towards predictive models for organic solvent nanofiltration. Computer Aided Chemical Engineering. 43. 115--120 [doi] [www]

  • Goebel, R.;Glaser, T.;Skiborowski, M. (2020). Machine-based learning of predictive models in organic solvent nanofiltration: Solute rejection in pure and mixed solvents. Separation and Purification Technology. 248. [doi] [www]

  • Goebel, R.;Schreiber, M.;Koleva, V.;Horn, M.;Gorak, A.;Skiborowski, M. (2019). On the reliability of lab-scale experiments for the determination of membrane specific flux measurements in organic solvent nanofiltration. Chemical Engineering Research and Design. 148. 271--279 [doi] [www]

  • Goebel, R.;Skiborowski, M. (2020). Machine-based learning of predictive models in organic solvent nanofiltration: Pure and mixed solvent flux. Separation and Purification Technology. 237. [doi] [www]

  • Groß, K.;Bieberle, A.;Gladyszewski, K.;Schubert, M.;Hampel, U.;Skiborowski, M.;Gorak, A. (2019). Analysis of Flow Patterns in High-Gravity Equipment Using Gamma-Ray Computed Tomography. Chemie-Ingenieur-Technik. 91. (7), 1032--1040 [doi] [www]

  • Groß, K.;Neumann, K.;Skiborowski, M.;Gorak, A. (2018). Analysing the operating limits in high gravity equipment. Chemical Engineering Transactions. 69. 661--666 [doi] [www]

  • Groß, K.;de Beer, M.;Dohrn, S.;Skiborowski, M. (2020). Scale-Up of the Radial Packing Length in Rotating Packed Beds for Deaeration Processes. Industrial and Engineering Chemistry Research. 59. (23), 11042--11053 [doi] [www]

  • Hampel, U.;Schubert, M.;Döß, A.;Sohr, J.;Vishwakarma, V.;Repke, J.-U.;Gerke, S. J.;Leuner, H.;Rädle, M.;Kapoustina, V.;Schmitt, L.;Grünewald, M.;Brinkmann, J. H.;Plate, D.;Kenig, E. Y.;Lutters, N.;Bolenz, L.;Buckmann, F.;Toye, D.;Arlt, W.;Linder, T.;Hoffmann, R.;Klein, H.;Rehfeldt, S.;Winkler, T.;Bart, H.-J.;Wirz, D.;Schulz, J.;Scholl, S.;Augustin, W.;Jasch, K.;Schlüter, F.;Schwerdtfeger, N.;Jahnke, S.;Jupke, A.;Kabatnik, C.;Braeuer, A. S.;D’Auria, M.;Runowski, T.;Casal, M. F.;Becker, K.;David, A.-L.;Gorak, A.;Skiborowski, M.;Groß, K.;Qammar, H. (2020). Recent Advances in Experimental Techniques for~Flow and Mass Transfer Analyses in Thermal Separation Systems. Chemie-Ingenieur-Technik. 92. (7), 926--948 [doi] [www]

  • Harwardt, A.;Skiborowski, M.;Marquardt, W. (2012). Modular equipment design in optimization-based process synthesis. Computer Aided Chemical Engineering. 30. 517--521 [doi] [www]

  • Horsch, A. S. and Hamann, D. and Egger, L. S. and Fieg, G. and Skiborowski, M. (2022). Demonstration of applied linear model predictive control for an enzymatic reactive dividing wall column. Chemical Engineering Research and Design. 178. 251--266 [doi]

  • Kim, T.-J.;Lang, A.;Chikukwa, A.;Sheridan, E.;Dahl, P. I.;Leimbrink, M.;Skiborowski, M.;Roubroeks, J. (2017). Enzyme Carbonic Anhydrase Accelerated CO2 Absorption in Membrane Contactor. Energy Procedia. 114. [doi] [www]

  • Kiss, A. A.;Geertman, R.;Wierschem, M.;Skiborowski, M.;Gielen, B.;Jordens, J.;John, J. J.;{van Gerven}, T. (2018). Ultrasound-assisted emerging technologies for chemical processes. Journal of Chemical Technology and Biotechnology. 93. (5), 1219--1227 [doi] [www]

  • Kraemer, K.;Harwardt, A.;Skiborowski, M.;Mitra, S.;Marquardt, W. (2011). Shortcut-based design of multicomponent heteroazeotropic distillation. Chemical Engineering Research and Design. 89. (8), 1168--1189 [doi] [www]

  • Krone, D. and Esche, E. and Asprion, N. and Skiborowski, M. and Repke, J.-U. (2022). Enabling optimization of complex distillation configurations in GAMS with CAPE-OPEN thermodynamic models. Computers & Chemical Engineering. 157. 107626 [doi]

  • Krone, D.;Esche, E.;Asprion, N.;Skiborowski, M.;Repke, J.-U. (2020). Conceptual Design Based on Superstructure Optimization in GAMS with Accurate Thermodynamic Models. Computer Aided Chemical Engineering. 48. 15--20 [doi] [www]

  • Kruber, K. F.;Grueters, T.;Skiborowski, M. (2019). Efficient design of intensified extractive distillation processes based on a hybrid optimization approach. Computer Aided Chemical Engineering. 46. 859--864 [doi] [www]

  • Kruber, K. F.;Grüters, T.;Skiborowski, M. (2021). Advanced hybrid optimization methods for the design of complex separation processes. Computers & Chemical Engineering. 107257 [doi]

  • Kruber, K. F.;Qammar, H.;Skiborowski, M. (2020). Optimization-Based Design of Rotating Packed Beds with Zickzack Packings. Computer Aided Chemical Engineering. 48. 997--1002 [doi] [www]

  • Kruber, K. F.;Scheffczyk, J.;Leonhard, K.;Bardow, A.;Skiborowski, M. (2018). A hierarchical approach for solvent selection based on successive model refinement. Computer Aided Chemical Engineering. 43. 325--330 [doi] [www]

  • Kruber, K. and Skiborowski, M. (2022). Topology-Based Initialization for the Optimization-Based Design of Heteroazeotropic Distillation Processes. Processes. 10. (8), 1482 [Abstract] [doi] [www]

  • Kuhlmann, H.;Möller, M.;Skiborowski, M. (2019). Analysis of TBA-Based ETBE Production by Means of an Optimization-Based Process-Synthesis Approach. Chemie-Ingenieur-Technik. 91. (3), 336--348 [doi] [www]

  • Kuhlmann, H.;Skiborowski, M. (2016). Synthesis of Intensified Processes from a Superstructure of Phenomena Building Blocks. Computer Aided Chemical Engineering. 38. 697--702 [doi] [www]

  • Kuhlmann, H.;Skiborowski, M. (2017). Optimization-Based Approach to Process Synthesis for Process Intensification: General Approach and Application to Ethanol Dehydration. Industrial and Engineering Chemistry Research. 56. (45), 13461--13481 [doi] [www]

  • Kuhlmann, H.;Veith, H.;Möller, M.;Nguyen, K.-P.;Gorak, A.;Skiborowski, M. (2018). Optimization-Based Approach to Process Synthesis for Process Intensification: Synthesis of Reaction-Separation Processes. Industrial and Engineering Chemistry Research. 57. (10), 3639--3655 [doi] [www]

  • Leimbrink, M.;Kunze, A.-K.;Hellmann, D.;Gorak, A.;Skiborowski, M. (2015). Conceptual Design of Post-Combustion CO2 Capture Processes - Packed Columns and Membrane Technologies. Computer Aided Chemical Engineering. 37. 1223--1228 [doi] [www]

  • Leimbrink, M.;Kupitz, K.;Neumann, K.;Gorak, A.;Skiborowski, M. (2016). Improving the energy efficiency of carbon capture processes - Combining enzyme accelerated solvent systems and improved contacting equipment. Environmental Division 2016 - Core Programming Area at the 2016 AIChE Annual Meeting. [www]

  • Leimbrink, M.;Kupitz, K.;Neumann, K.;Gorak, A.;Skiborowski, M. (2016). Improving the energy efficiency of carbon capture processes - Combining enzyme accelerated solvent systems and improved contacting equipment. Sustainable Engineering Forum 2016 - Core Programming Area at the 2016 AIChE Annual Meeting. [www]

  • Leimbrink, M.;Limberg, T.;Kunze, A.-K.;Skiborowski, M. (2017). Different Strategies for Accelerated CO2 Absorption in Packed Columns by Application of the Biocatalyst Carbonic Anhydrase. Energy Procedia. 114. [doi] [www]

  • Leimbrink, M.;Neumann, K.;Kupitz, K.;Gorak, A.;Skiborowski, M. (2017). Enzyme Accelerated Carbon Capture in different Contacting Equipment - A Comparative Study. Energy Procedia. 114. [doi] [www]

  • Leimbrink, M.;Nikoleit, K. G.;Spitzer, R.;Salmon, S.;Bucholz, T.;Gorak, A.;Skiborowski, M. (2018). Enzymatic reactive absorption of CO2 in MDEA by means of an innovative biocatalyst delivery system. Chemical Engineering Journal. 334. 1195--1205 [doi] [www]

  • Leimbrink, M.;Sandkämper, S.;Wardhaugh, L.;Maher, D.;Green, P.;Puxty, G.;Conway, W.;Bennett, R.;Botma, H.;Feron, P.;Gorak, A.;Skiborowski, M. (2017). Energy-efficient solvent regeneration in enzymatic reactive absorption for carbon dioxide capture. Applied Energy. 208. 263--276 [doi] [www]

  • Leimbrink, M.;Tlatlik, S.;Salmon, S.;Kunze, A.-K.;Limberg, T.;Spitzer, R.;Gottschalk, A.;Gorak, A.;Skiborowski, M. (2017). Pilot scale testing and modeling of enzymatic reactive absorption in packed columns for CO2 capture. International Journal of Greenhouse Gas Control. 62. 100--112 [doi] [www]

  • Liu, S. and Li, H. and Kruber, B. and Skiborowski, M. and Gao, X. (2022). Process intensification by integration of distillation and vapor permeation or pervaporation - An academic and industrial perspective. Results in Engineering. 15. 100527 [doi]

  • Lukin, I.;Gladyszewski, K.;Skiborowski, M.;Gorak, A.;Schembecker, G. (2021). Aroma absorption in a rotating packed bed with a tailor-made archimedean spiral packing. Chemical Engineering Science. 231. [doi] [www]

  • Mackowiak, J. F.;Syringa, K.;Thomas, A.;Leimbrink, M.;Skiborowski, M.;Gorak, A.;Mackowiak, J. (2018). Absorption of carbon dioxide using enzyme activated amine solution in columns with random packings. Chemical Engineering Transactions. 69. 115--120 [doi] [www]

  • Neumann, K.;Gladyszewski, K.;Groß, K.;Qammar, H.;Wenzel, D.;Gorak, A.;Skiborowski, M. (2018). A guide on the industrial application of rotating packed beds. Chemical Engineering Research and Design. 134. 443--462 [doi] [www]

  • Neumann, K.;Hunold, S.;Skiborowski, M.;Gorak, A. (2017). Dry Pressure Drop in Rotating Packed Beds - Systematic Experimental Studies. Industrial and Engineering Chemistry Research. 56. (43), 12395--12405 [doi] [www]

  • Neumann, K.;Hunold, S.;de Beer, M.;Skiborowski, M.;Gorak, A. (2018). Mass Transfer Studies in a Pilot Scale RPB with Different Packing Diameters. Industrial and Engineering Chemistry Research. 57. (6), 2258--2266 [doi] [www]

  • Qammar, H.;Gladyszewski, K.;Gorak, A.;Skiborowski, M. (2019). Towards the Development of Advanced Packing Design for Distillation in Rotating Packed Beds. Chemie-Ingenieur-Technik. 91. (11), 1663--1673 [doi] [www]

  • Qammar, H.;Hecht, F.;Skiborowski, M.;Gorak, A. (2018). Experimental investigation and design of rotating packed beds for distillation. Chemical Engineering Transactions. 69. 655--660 [doi] [www]

  • Recker, S.;Skiborowski, M.;Redepenning, C.;Marquardt, W. (2014). Systematic and optimization-based design of integrated reaction-separation processes. Computer Aided Chemical Engineering. 34. 417--422 [doi] [www]

  • Recker, S.;Skiborowski, M.;Redepenning, C.;Marquardt, W. (2015). A unifying framework for optimization-based design of integrated reaction-separation processes. Computers and Chemical Engineering. 81. 260--271 [doi] [www]

  • Redepenning, C.;Skiborowski, M.;Marquardt, W. (2013). Shortcut method for the design of extraction columns for multi-component mixture separations. Computer Aided Chemical Engineering. 32. 1039--1044 [doi] [www]

  • Sasi, T.;Kruber, K.;Ascani, M.;Skiborowski, M. (2020). Automatic Synthesis of Distillation Processes for the Separation of Heterogeneous Azeotropic Multi-component Mixtures. Computer Aided Chemical Engineering. 48. 1009--1014 [doi] [www]

  • Sasi, T.;Skiborowski, M. (2020). Automatic Synthesis of Distillation Processes for the Separation of Homogeneous Azeotropic Multicomponent Systems. Industrial and Engineering Chemistry Research. 59. (47), 20816--20835 [doi] [www]

  • Sasi, T.;Wesselmann, J.;Kuhlmann, H.;Skiborowski, M. (2019). Automatic synthesis of distillation processes for the separation of azeotropic multi-component systems. Computer Aided Chemical Engineering. 46. 49--54 [doi] [www]

  • Scharzec, B.;Holtkötter, J.;Bianga, J.;Dreimann, J. M.;Vogt, D.;Skiborowski, M. (2020). Conceptual study of co-product separation from catalyst-rich recycle streams in thermomorphic multiphase systems by OSN. Chemical Engineering Research and Design. 157. 65--76 [doi] [www]

  • Scharzec, B.;Kruber, K. F.;Skiborowski, M. (2021). Model-based evaluation of a membrane-assisted hybrid extraction-distillation process for energy and cost-efficient purification of diluted aqueous streams. Chemical Engineering Science. 240. 116650 [doi]

  • Scharzec, B.;Merschhoff, D.;Henrichs, J.;K., Emiel J.;Skiborowski, M. (2021). Evaluation of membrane-assisted hybrid processes for the separation of a tetrahydrofuran-methanol-water mixture. Chemical Engineering and Processing - Process Intensification. 167. 108545 [doi]

  • Scharzec, B.;Skiborowski, M. (2018). Improved modeling of membrane separation in integrated hybrid processes. Computer Aided Chemical Engineering. 43. 561--562 [doi] [www]

  • Scharzec, B.;Waltermann, T.;Skiborowski, M. (2017). A Systematic Approach towards Synthesis and Design of Pervaporation-Assisted Separation Processes. Chemie-Ingenieur-Technik. 89. (11), 1534--1549 [doi] [www]

  • Schlüter, S. and Huxoll, F. and Grenningloh, K. and Sadowski, G. and Petzold, M. and Böhm, L. and Kraume, M. and Skiborowski, M. (2022). Unraveling the influence of dissolved gases on permeate flux in organic solvent nanofiltration – Experimental analysis. Separation and Purification Technology. 295. 121265 [doi]

  • Schlüter, S.;Künnemann, K. U.;Freis, M.;Roth, T.;Vogt, D.;Dreimann, J. M.;Skiborowski, M. (2021). Continuous co-product separation by organic solvent nanofiltration for the hydroaminomethylation in a thermomorphic multiphase system. Chemical Engineering Journal. 409. [doi] [www]

  • Skiborowski, M. (2018). Fast screening of energy and cost efficient intensified distillation processes. Chemical Engineering Transactions. 69. 199--204 [doi] [www]

  • Skiborowski, M. (2018). Process synthesis and design methods for process intensification. Current Opinion in Chemical Engineering. 22. 216--225 [doi] [www]

  • Skiborowski, M. (2020). Energy Efficient Distillation by Combination of Thermal Coupling and Heat Integration. Computer Aided Chemical Engineering. 48. 991--996 [doi] [www]

  • Skiborowski, M.;Bausa, J.;Marquardt, W. (2016). A Unifying Approach for the Calculation of Azeotropes and Pinch Points in Homogeneous and Heterogeneous Mixtures. Industrial and Engineering Chemistry Research. 55. (24), 6815--6834 [doi] [www]

  • Skiborowski, M.;Harwardt, A.;Marquardt, W. (2013). Conceptual design of distillation-based hybrid separation processes. Annual Review of Chemical and Biomolecular Engineering. 4. 45--68 [doi] [www]

  • Skiborowski, M.;Harwardt, A.;Marquardt, W. (2014). Conceptual Design of Azeotropic Distillation Processes. Distillation: Fundamentals and Principles. [doi] [www]

  • Skiborowski, M.;Harwardt, A.;Marquardt, W. (2015). Efficient optimization-based design for the separation of heterogeneous azeotropic mixtures. Computers and Chemical Engineering. 72. 34--51 [doi] [www]

  • Skiborowski, M.;Kraemer, K.;Marquardt, W. (2011). A general process design methodology for membrane-assisted hybrid processes-deterministic mixed-integer process optimization. Institution of Chemical Engineers Symposium Series. 157. [www]

  • Skiborowski, M.;Mhamdi, A.;Kraemer, K.;Marquardt, W. (2012). Model-based structural optimization of seawater desalination plants. Desalination. 292. 30--44 [doi] [www]

  • Skiborowski, M.;Rautenberg, M.;Marquardt, W. (2013). A novel approach to hybrid evolutionary-deterministic optimization in process design. Computer Aided Chemical Engineering. 32. 961--966 [doi] [www]

  • Skiborowski, M.;Rautenberg, M.;Marquardt, W. (2015). A Hybrid Evolutionary-Deterministic Optimization Approach for Conceptual Design. Industrial and Engineering Chemistry Research. 54. (41), 10054--10072 [doi] [www]

  • Skiborowski, M.;Recker, S.;Marquardt, W. (2018). Shortcut-based optimization of distillation-based processes by a novel reformulation of the feed angle method. Chemical Engineering Research and Design. 132. 135--148 [doi] [www]

  • Skiborowski, M.;Temmann, P.;Brandenbusch, C. (2018). Analyzing the link between GE-model parameter regression and optimal process design. Computer Aided Chemical Engineering. 43. 103--108 [doi] [www]

  • Skiborowski, M.;Wessel, J.;Marquardt, W. (2014). Efficient optimization-based design of membrane-assisted distillation processes. Industrial and Engineering Chemistry Research. 53. (40), 15698--15717 [doi] [www]

  • Thiermeyer, Y.;Blumenschein, S.;Skiborowski, M. (2018). Solvent dependent membrane-solute sensitivity of OSN membranes. Journal of Membrane Science. 567. 7--17 [doi] [www]

  • Thiermeyer, Y.;Blumenschein, S.;Skiborowski, M. (2021). Fundamental insights into the rejection behavior of polyimide-based OSN membranes. Separation and Purification Technology. 265. 118492 [doi]

  • Ulonska, K.;Skiborowski, M.;Mitsos, A.;Viell, J. (2016). Early-stage evaluation of biorefinery processing pathways using process network flux analysis. AIChE Journal. 62. (9), 3096--3108 [doi] [www]

  • Vondran, J.;Pela, J.;Palczewski, D.;Skiborowski, M.;Seidensticker, T. (2021). Curse and Blessing–The Role of Water in the Homogeneously Ru-Catalyzed Epoxidation of Technical Grade Methyl Oleate. ACS Sustainable Chemistry & Engineering. 9. (34), 11469--11478 [doi]

  • Waltermann, T.;Benfer, R.;Schlueter, S.;Reinhardt, A.;Knoesche, C.;Gorak, A.;Skiborowski, M. (2018). Choosing the right model for distillation processes in packed columns: Theory and experiments. Chemical Engineering Transactions. 69. 367--372 [doi] [www]

  • Waltermann, T.;Grueters, T.;Münchrath, D.;Skiborowski, M. (2020). Efficient optimization-based design of energy-integrated azeotropic distillation processes. Computers and Chemical Engineering. 133. [doi] [www]

  • Waltermann, T.;Grueters, T.;Skiborowski, M. (2018). Optimization of extractive distillation – integrated solvent selection and energy integration. Computer Aided Chemical Engineering. 44. 187--192 [doi] [www]

  • Waltermann, T.;Münchrath, D.;Skiborowski, M. (2017). Efficient optimization-based design of energy-intensified azeotropic distillation processes. Computer Aided Chemical Engineering. 40. 1045--1050 [doi] [www]

  • Waltermann, T.;Schlueter, S.;Benfer, R.;Knoesche, C.;Gorak, A.;Skiborowski, M. (2020). Model Discrimination for Multicomponent Distillation – A Geometrical Approach for Total Reflux. Chemie-Ingenieur-Technik. 92. (7), 890--906 [doi] [www]

  • Waltermann, T.;Sibbing, S.;Skiborowski, M. (2019). Optimization-based design of dividing wall columns with extended and multiple dividing walls for three- and four-product separations. Chemical Engineering and Processing - Process Intensification. 146. [doi] [www]

  • Waltermann, T.;Skiborowski, M. (2019). Efficient optimization-based design of energy-integrated distillation processes. Computers and Chemical Engineering. 129. [doi] [www]

  • Waltermann, T.;Skiborowski, M. (2016). Computationally efficient evaluation of energetically improved distillation processes for the separation of nonideal mixtures. Computing and Systems Technology Division 2016 - Core Programming Area at the 2016 AIChE Annual Meeting. [www]

  • Waltermann, T.;Skiborowski, M. (2017). Conceptual Design of Highly Integrated Processes – Optimization of Dividing Wall Columns. Chemie-Ingenieur-Technik. 89. (5), 562--581 [doi] [www]

  • Waltermann, T.;Skiborowski, M. (2016). Efficient optimization-based design of energetically intensified distillation processes. Computer Aided Chemical Engineering. 38. 571--576 [doi] [www]

  • Werth, K.;Behling, P.;Hnida, A.;Skiborowski, M. (2015). Process synthesis of flexible and sustainable processes consisting of membrane separations and reactive distillation for the production of biodiesel. Innovations of Green Process Engineering for Sustainable Energy and Environment 2015 - Topical Conference at the 2015 AIChE Annual Meeting. [www]

  • Werth, K.;Kaupenjohann, P.;Knierbein, M.;Skiborowski, M. (2017). Solvent recovery and deacidification by organic solvent nanofiltration: Experimental investigation and mass transfer modeling. Journal of Membrane Science. 528. 369--380 [doi] [www]

  • Werth, K.;Kaupenjohann, P.;Skiborowski, M. (2017). The potential of organic solvent nanofiltration processes for oleochemical industry. Separation and Purification Technology. 182. 185--196 [doi] [www]

  • Werth, K.;Neumann, K.;Skiborowski, M. (2015). Computer-aided process analysis of an integrated biodiesel process incorporating reactive distillation and organic solvent nanofiltration. Computer Aided Chemical Engineering. 37. 1277--1282 [doi] [www]

  • Werth, K.;Skiborowski, M. (2018). CHAPTER 6: Organic Solvent Nanofiltration for an Intensified Processing of Renewable Raw Materials. RSC Green Chemistry. 2018-January. (55), 132--144 [doi] [www]

  • Wierschem, M.;Langen, A. A.;Lins, J.;Spitzer, R.;Skiborowski, M. (2018). Model validation for enzymatic reactive distillation to produce chiral compounds. Journal of Chemical Technology and Biotechnology. 93. (2), 498--507 [doi] [www]

  • Wierschem, M.;Leimbrink, M.;Skiborowski, M.;Heils, R.;Smirnova, I.;Gorak, A. (2018). CHAPTER 10: Enzymatic Reactive Absorption and Distillation. RSC Green Chemistry. 2018-January. (55), 210--248 [doi] [www]

  • Wierschem, M.;Schlimper, S.;Heils, R.;Smirnova, I.;Kiss, A. A.;Skiborowski, M.;Lutze, P. (2017). Pilot-scale validation of Enzymatic Reactive Distillation for butyl butyrate production. Chemical Engineering Journal. 312. 106--117 [doi] [www]

12