Publications

42. Hermann, P.; Timmermann, J.; Hoffmann, M.; Schlüter, M.; Hofmann, C.; Löb, P.; Ziegenbalg, D.: Optimization of a Split and Recombine Micromixer by Improved Exploitation of Secondary Flows, Chemical Engineering Journal, 11/2017, accepted for publication. DOI: 10.1016/j.cej.2017.11.131

41. Pesch, S.; Jaeger, P.; Jaggi, A.; Malone, K.; Hoffmann, M.; Krause, D.; Oldenburg, T.; Schlüter, M.: Rise Velocity of Live-Oil Droplets in Deep-Sea Oil Spills. Environmental Engineering Science, 11/2017, accepted for publication.

40. Schlüter, M.; Billet, A.-M.; Herres-Pawlis, S.: Reactive Bubbly Flows. Chemical Engineering & Technology, 2017, DOI:10.1002/ceat.201770085

39. Kastens, S.; Timmermann, J.; Strassl, F.; Rampmaier, R. F.; Hoffmann, A.; Herres-Pawlis, S.; Schlüter, M.: Test system for the investigation of reactive Taylor bubbles. Chem. Eng. Tech., 2017, 40(8), pp. 1494-1501, DOI: 10.1002/ceat.201700047 

38. Iwakiri, M., Koichi T., Fujioka, S., Schlüter, M., Kastens, S., Tanaka, S.: Mass Transfer from a Shrinking Single Microbubble Rising in Water.  Japanese Journal of Multiphase Flow, 2017, 30(5), pp. 529-535, DOI:10.3811/jjmf.30.529

37. Sellin, D; Hiessl, R.; Bothe, M.; Timmermann, J.; Becker, M.; Schlüter, M.; Liese, A.: Simultaneous local determination of mass transfer and residence time distribuations in organic multiphase systems. Chemical Engineering Journal, 2017, 321, pp. 635-641, DOI: 10.1016/j.cej.2017.03.150.

36. Mierka, O.; Munir, M.; Spille, C.; Timmermann, J.; Schlüter, M.; Turek, S.: Reactive liquid flow simulation of micromixers based on grid deformation techniques. Chemical Engineering & Technology, 2017, accepted article, DOI: 10.1002/ceat.201600686.

35. Bothe, M.; Christlieb, M.-A.; Hoffmann, M.; Tedjasukmana, O.; Michaux, F.; Rollbusch, P.; Becker, M.; Schlüter, M.: Bubble size and bubble velocity distribution in bubble columns under industrial conditions, The Canadian Journal of Chemical Engineering, 2017, 95(5), pp. 902-912, DOI: 10.1002/cjce.22759.

34. Meinicke, S.; Möller, C.-O.; Dietrich, B.; Schlüter, M.; Wetzel, T.: Experimental and numerical investigation of single-phase hydrodynamics in glass sponges by means of combined µPIV measurements and CFD simulation, Chemical Engineering Science, 2017, 160, pp. 131-143, DOI: 10.1016/j.ces.2016.11.027.

33. Stahlberg, N.; Mosler, S.; Schlüter, M.: Writing, Calculating and Peer Feedback in a Mathematically-oriented Course for Process Engineers: Raising Motivation and Initiating Processes of Thinking and Learning, Journal of Academic Writing, 2016, 6(1), pp. 84-97, DOI: 10.18552/joaw.v6i1.285.

32. Timmermann, J.; Hoffmann, M.; Schlüter, M.: Influence of bubble bouncing on mass transfer and chemical reaction, Chemical Engineering & Technology, 2016, 39(10), pp. 1955-1962, DOI: 10.1002/ceat.201600299.

31. Laqua, K.; Malone, K.; Hoffmann, M.; Krause, D.; Schlüter, M.: Methane bubble rise velocities under deep-sea conditions - influence of initial shape deformation, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 505, pp. 106–117, DOI: 10.1016/j.colsurfa.2016.01.041.

30. Falconi, C. J.; Lehrenfeld, C.; Marschall, H.; Meyer, C.; Abiev, R.; Bothe, D; Reusken, A.; Schlüter, M.; Wörner, M.: Numerical and experimental analysis of local flow phenomena in laminar Taylor flow in a square mini-channel, Physics of Fluids, 2016, 28, 012109-1 - 012109-23, DOI: 10.1063/1.4939498.

29. Kastens, S.; Hosoda, S.; Schlüter, M.; Tomiyama, A.: Mass Transfer from Single Taylor Bubbles in Mini Channels, Chemical Engineering & Technology, 2015, 38(11), special Issue: "Multiscale Multiphase Process Engineering" (Editorial: Schlüter, M.; Bothe, D.; Terasaka, K.), pp. 1925-1932, DOI: 10.1002/ceat.201500065.

28. Rollbusch, P.; Bothe, M.; Becker, M.; Ludwig, M.; Grünewald, M.; Schlüter, M.; Franke, R.: Bubble columns operated under industrially relevant conditions – Current understanding of design parameters, Chemical Engineering Science, 2015, 126, pp. 660–678, doi:10.1016/j.ces.2014.11.061.

27. Urban, C.; Schlüter, M.: Investigations on the stochastic nature of condensation induced water hammer, International Journal of Multiphase Flow, 2014, 67, pp. 1-9, DOI: 10.1016/j.ijmultiphaseflow.2014.08.001.

26. Meyer, C.; Hoffmann, M.; Schlüter, M.: Micro-PIV analysis of gas-liquid Taylor flow in a vertical oriented square shaped fluidic channel, International Journal of Multiphase Flow, 2014, 67, pp. 140-148, DOI: 10.1016/j.ijmultiphaseflow.2014.07.004.

25. Aland, S.; Lehrenfeld, C.; Marschall, H.;  Meyer, C.; Weller, S: Accuracy of two-phase flow simulations: The Taylor Flow benchmark, PAMM-Proceedings in Applied Mathematics and Mechanics, 2013, 13(1), pp. 595 – 598,
DOI: 10.1002/pamm.201310278
.

24. Mosler, S.; Rajabi, N.; Hoffmann, M. ; Müller, J.; Schlüter, M.: Numerical Simulations and Experimental Investigations of Two-Phase Flows in a Y-Y-Shaped Microreactor, International Journal of Microscale and Nanoscale Thermal and Fluid Transport Phenomena, 2013, 4(3-4), pp. 283 - 295.

23. Bothe, M.; Schlüter, M.: Modellierungsparameter für Blasenströmungen, Chemie Ingenieur Technik, 2013, 85(7), pp. 1023–1035, DOI: 10.1002/cite.201300051.

22. Hampel U.; Dittmeyer, R.; Patyk, A.; Wetzel, T.; Lange, R.; Freund, H.; Schwieger, W.; Grünewald, M.; Schlüter, M.; Petasch, U.: Die Helmholtz-Energie-Allianz "Energieeffiziente Chemische Mehrphasenprozesse", Chemie Ingenieur Technik, 2013, 85(7), pp. 992-996, DOI: 10.1002/cite.201300002.

21. Becker, M.; Tuinier, M.; Rollbusch, P.; Ludwig, M.; Franke, R.; Grünewald, M.; Schlüter, M.: BMBF-Projekt "Multi-Phase", Chemie Ingenieur Technik, 2013, 85(7), pp. 989-991, DOI: 10.1002/cite.201390062.

20. Kaufhold, D.; Kopf, F.; Wolff, C.; Beutel, S.; Hilterhaus, L.; Hoffmann, M.; Scheper, T.; Schlüter, M.; Liese, A.: Reaktive Absorption von Kohlenstoffdioxid in helikalen Hohlfasermembrankontaktoren, Chemie Ingenieur Technik, 2013, 85(4), pp. 476-483, DOI: 10.1002/cite.201200240.

19. Kaufhold, D.; Kopf, F.; Wolff, C.; Beutel, S.; Hilterhaus, L.; Hoffmann, M.; Scheper, T.; Schlüter, M.; Liese, A.: Generation of Dean vortices and enhancement of oxygen transfer rates in membrane contactors for different hollow fiber geometries. Journal of Membrane Science, 2012, 423-424, pp. 342-347, DOI: 10.1016/j.memsci.2012.08.035.

18. Mosler, S.; Hoffmann, M.; Schlüter, M.; Rajabi, N.; Müller, J.: Numerical simulations and experimental investigations of two-phase flows in a Y-Y-shaped microreactor, Proceedings of the 3rd European Conference on Microfluidics - Microfluidics 2012, Heidelberg (conference paper: peer reviewed)

17. Rajabi, N.; Hoffmann, M.; Bahnemann, J.; Zeng, A.-P.; Schlüter, M.; Müller, J.: A Chaotic Advection Enhanced Microfluidic Split-and-Recombine Mixer for the Preparation of Chemical and Biological Probes, Journal of chemical engineering of Japan, 2012, 45(9), pp. 703–707, http://dx.doi.org/10.1252/jcej.12we071.

16. Kück, U.D.; Schlüter, M.; Räbiger, N.: Local Measurement of Mass Transfer Rate of a Single Bubble with and without a Chemical Reaction; Journal of Chemical Engineering of Japan, 2012, 45(9), pp. 708–712, http://dx.doi.org/10.1252/jcej.12we059.

15. Adryan, P.; Brandenburg, G.; Hameister, D.; Höffer, D.; Illner, S.; Kragl, U.; Moritz, H.-U. ; Müller, C.; Pauer, W.; Räbiger, N.; Rößner, F.; Schlüter, M.; Sell, M.; Sleumer, K.: Mixing and Reactions in Microchannels – an Educational Approach Using the Internet, Chemie Ingenieur Technik, 2012, 84(9), pp. 1505–1512,  DOI: 10.1002/cite.201100211.

14. Schlüter, M.: Lokale Messverfahren für Mehrphasenströmungen, Chemie Ingenieur Technik, 2011, 83(7), pp. 1084-1095, DOI: 10.1002/cite.201100039.

13. Kopf, F.; Schlüter, M.; Kaufhold, D.; Hilterhaus, L.; Liese, A.; Wolff, C.; Beutel, S.; Scheper, T.: Laminares Mischen in Miniatur-Hohlfasermembranreaktoren durch Ausnutzung von Sekundärströmungen (Teil 1), Chemie Ingenieur Technik, 2011, 83(7), pp. 1066-1073, DOI: 10.1002/cite.201100044.

12. Kück, U. D.; Kröger, M.; Bothe, D.; Räbiger, N.; Schlüter, M.; Warnecke, H.-J.: Skalenübergreifende Beschreibung der Transportprozesse bei Gas-Flüssig Reaktionen, Chemie Ingenieur Technik, 2011, 83(7), pp. 992-1004, DOI: 10.1002/cite.201100036.

11. Wiedemann, M.; Räbiger, N.; Schlüter, M.; Eisenlauer, J.; Riener, F.-X.; Kutschera, D.; Neumann, S.; Döring, W.: Scale-down des Strahlzonen-Schlaufenreaktors: Entwicklung eines Screening-Tools für transportlimitierte chemische Reaktionen, Chemie Ingenieur Technik, 2011, 83(3), pp. 349–357, DOI: 10.1002/cite.201000098.

10. Räbiger N.; Schlüter M.: Formation and Movement of Bubbles and Drops, Chapter L4.1, in: VDI Heat Atlas, VDI-GVC (ed.); Second Edition, Springer-Verlag, Berlin, Heidelberg 2010, DOI: 10.1007/978-3-540-77877-6_89.

9. Wiedemann, M.; John, S.; Schlüter, M.; Kutschera, D.; Riener, F.-X.; Döring, W.; Eisenlauer, J.: Einsatz des Strahlzonen-Schlaufenreaktors bei stofftransportlimitierten, mehrphasigen chemischen Reaktionen, Chemie Ingenieur Technik, 2010, 82(3), pp. 243-250, DOI: 10.1002/cite.200900164.

8. Wiedemann, M.; Schlüter, M.; Räbiger, N.: Investigation of the local specific energy dissipation rates in a jet-zone Loop Reactor for halogenation of ketones. The Canadian Journal of Chemical Engineering, 2010, 88(3), pp. 359-366, DOI: 10.1002/cjce.20284.

7. Kück, U.D.; Schlüter, M.; Räbiger, N.: Analyse des grenzschichtnahen Stofftransports an frei aufsteigenden Gasblasen durch simultane Vermessung von Strömungs- und Konzentrationsfeldern, Chemie Ingenieur Technik, 2009, 81(10), pp. 1599-1606, DOI: 10.1002/cite.200900034.

6. Hoffmann, M.; Schlüter, M.; Räbiger, N.: Untersuchung der Mischvorgänge in Mikroreaktoren durch Anwendung von Micro-LIF und Micro-PIV, Chemie Ingenieur Technik, 2007, 79(7), pp. 1067–1075, DOI: 10.1002/cite.200700064.

5. Hoffmann, M.; Schlüter M.; Räbiger N.: Experimental investigation of liquid-liquid mixing in T-shaped micro-mixers using μ-LIF and μ-PIV, Chemical Engineering Science, 61(9), pp. 2968-2976, 2006, DOI: 10.1016/j.ces.2005.11.029.

4. Koynov, A.; Tryggvason, G.; Schlüter, M.; Khinast, J.G.: Mass Transfer and Chemical Reactions in Reactive Deformable Bubble Swarms, Applied Physics Letters 88, 2006, pp. 134102-1 - 134102-3, DOI: 10.1063/1.2188054.

3. Schlüter, M.; Scheid, S.; John, S.; Räbiger, N.: Influence of local effects in three phase flows on power input in Jet-Loop Reactors, Powder Technology, 151(1-3), pp. 68-76, 2005.

2. Bork, O.; Schlüter, M.; Räbiger, N.: The Impact of Local Phenomena on Mass Transfer in Gas-Liquid Systems, The Canadian Journal of Chemical Engineering, 83, 2005, pp. 658-666, DOI: 10.1002/cjce.5450830406.

1. Schlüter, M.; Hoffmann, M.; Räbiger, N.: Theoretische und experimentelle Untersuchung der Mischvorgänge in T-förmigen Mikroreaktoren – Teil 2: Experimentelle Untersuchung des Strömungsmischen, Chemie Ingenieur Technik, 2004, 76(11), pp. 1682-1688, DOI: 10.1002/cite.200407015.

 

Chapter in books

16. Rüttinger, S.; Hoffmann, M.; Schlüter, M.: Estimation of turbulent kinetic energy dissipation rate using a two-camera high-speed PIV set-up, in: Lasermethoden in der Strömungsmesstechnik: 25. Fachtagung, 5. - 7. September 2017, Karlsruhe, Ruck, B.; Gromke, C.; Leder, A.; Dopheide, D. (Eds.), Deutsche Gesellschaft für Laser-Anemometrie GALA e.V., 2017, pp. 35-1 - 35-8, ISBN: 978-3-9816764-3-3.

15. Kastens, S.; Meyer, C.; Hoffmann, M.; Schlüter, M.: Experimental Investigation and Modelling of Local Mass Transfer Rates in Pure and Contaminated Taylor Flows, in Transport Processes at Fluidic Interfaces (ISBN 978-3-319-56602-3), Bothe, D.; Reusken, A. (Eds.), Advances in Mathematical Fluid Mechanics, 2017, DOI: 10.1007/978-3-319-56602-3_21

14. Rüttinger, S.; Hoffmann, M.; Schlüter, M.: Measurements of instantaneous flow structure – influence of vortical structures on mass transfer in vicinity of a fixed bubble, in: Lasermethoden in der Strömungsmesstechnik: 24. Fachtagung, 6. - 8. September 2016, Cottbus, C. Egbers, B. Ruck, A. Leder, D. Dopheide (Eds.), Deutsche Gesellschaft für Laser-Anemometrie GALA e.V., 2016, pp. 9-1 - 9-9, ISBN: 978-3-9816764-2-6.

13. Szeliga, N.; Richter, S.; Bezecny, D.; Hoffmann, M.; Schlüter, M.: Determination of the Influence of Tangential Momentum on Air-Core Vortex Formation at Pump Intakes by Means of Particle Image Velocimetry, in: Lasermethoden in der Strömungsmesstechnik: 24. Fachtagung, 6. - 8. September 2016, Cottbus, C. Egbers, B. Ruck, A. Leder, D. Dopheide (Eds.), Deutsche Gesellschaft für Laser-Anemometrie GALA e.V., 2016, pp. 30-1 - 30-9, ISBN: 978-3-9816764-2-6.

12. Rüttinger, S.; Pesch, S.; Möller, C.-O.; Schlüter, M.: Application  of  the  endoscopic  PIV  measurement  technique  in  bubbly  flows - comparison with state-of-the-art PIV measurements, in: Lasermethoden in der Strömungsmesstechnik: 23. Fachtagung, 8. - 10. September 2015, Dresden, J. Czarske (editor), Deutsche Gesellschaft für Laser-Anemometrie GALA e.V., 2015, pp. 55-1 - 55-10, ISBN: 978-3-9816764-1-9.

11. Szeliga, N.; Richter, S.; Bezecny, D.; Schlüter, M.: Determination of tangential velocities in free surface vortices by high-speed PIV measurements, in: Lasermethoden in der Strömungsmesstechnik: 23. Fachtagung, 8. - 10. September 2015, Dresden, J. Czarske (editor), Deutsche Gesellschaft für Laser-Anemometrie GALA e.V., 2015, pp. 43-1 - 43-10, ISBN: 978-3-9816764-1-9.

10. Bothe, M.; Schlüter, M.: Experimental Study of Relative Bubble Velocity using a LED Pulsed Measurement Technique, in: 7th International Berlin Workshop (IBW7)  - Transport Phenomena with Moving Boundaries and More: 30th - 31th October 2014, Berlin, F.-P. Schindler, M. Kraume (eds.) , VDI-Verlag, Düsseldorf, 2015,  ISBN: 978-3-18-394703-4.

9.  Räbiger N.; Schlüter M.: Bildung und Bewegung von Tropfen und Blasen, Kapitel L4.1, in: VDI-Wärmeatlas, VDI e.V. (Hrsg.);  11. Aufl., Springer-Verlag, Berlin, Heidelberg 2013, DOI: 10.1007/978-3-642-19981-3_92.

8. Kaltschmitt, M. ; Schlüter, M.; Schulz, D.; Skiba; M.; Özdirik, B.: Stromerzeugung aus Windenergie, in: Erneuerbare Energien - Systemtechnik, Wirtschaftlichkeit, Umweltaspekte; Kaltschmitt, M.; Streicher, W.; Wiese, A. (Hrsg.), 5. Aufl., Springer-Verlag, Berlin, Heidelberg 2013, DOI: 10.1007/978-3-642-03249-3_7.

7. Kück, U. D.; Schlüter, M.; Räbiger N.: Experimental investigation of oxygen mass transfer at free rising gas bubbles in a reactive liquid, in: 6th International Berlin Workshop - IBW 6 on Transport Phenomena with Moving Boundaries: 24th - 25th October 2011, Berlin, F.-P. Schindler, M. Kraume (Eds.) , VDI-Verlag, Düsseldorf, 2012,  ISBN: 978-3-18-392903-0.

6. Räbiger N.; Schlüter M.: Formation and Movement of Bubbles and Drops, Chapter L4.1, in: VDI Heat Atlas, VDI-GVC (ed.); Second Edition, Springer-Verlag, Berlin, Heidelberg 2010, DOI: 10.1007/978-3-540-77877-6_89.

5. Hoffmann M.; Schlüter M.; Räbiger N.: Experimental Analysis and Modeling of Micromixing in Microreactors, in: Micro and Macro Mixing - Analysis, Simulation and Numerical Calculation; Bockhorn H.; Mewes, D.; Peukert, W.; Warnecke,  H.-J. (Eds.); Springer-Verlag, Berlin, Heidelberg 2010.

4. Hoffmann M.; Schlüter M.; Räbiger N.: Microscale flow visualization, in: Micro Process Engineering – A Comprehensive Handbook, Vol. 1: Fundamentals, Operations and Catalysts; Hessel, V.; Renken, A.; Schouten, J.C.; Yoshida, J.-I. (Eds.); Wiley-VCH, Weinheim; 2009.

3. Schlüter M.; Hoffmann M.; Räbiger N.: Characterisation of micro fluidic devices by measurements with μ-PIV and CLSM. Particle Image Velocimetry – New Developments and Recent Applications; Schröder, A.; Willert, C. E. (Eds.); Springer-Verlag, Berlin, Heidelberg 2008.

2. Räbiger, N.; Schlüter, M.: Bildung und Bewegung von Tropfen und Blasen, Absch. Lda1, in VDI-Wärmeatlas, 10. Auflage, Springer Verlag, Berlin, Heidelberg 2006.

1. Scheid, S.; John, S.; Bork, O.; Parchmann, H.; Schlüter, M.; Räbiger, N.: Improved model for the calculation of homogeneous gas-liquid flows. In: Bubbly Flows: Analysis, Modelling and Calculation, Springer-Verlag, 2004, ISBN 3-540-40791.