Publications


Here you will find all publications of the Institut of Multiphase Flows that have a DOI or an ISBN. The individual entries can be downloaded in BibTex format.

For a detailed search in our list, please click here.

Posters of conventions and conferences can be found here.


A

  • Adryan, P.; Brandenburg, G.; Hameister, D.; Höffer, D.; Illner, S.; Kragl, U.; Moritz, H.-U. ; Müller, C.; Pauer, W.; Räbiger, N.; Rößner, F.; Schlüter, M.; Sell, M.; Sleumer, K. (2012). Mixing and Reactions in Microchannels – an Educational Approach Using the Internet. Chemie Ingenieur Technik. 4 (9), 1505-1512. [Abstract] [doi] [www] [BibTex]

  • Aland, S.; Lehrenfeld, C.; Marschall, H.; Meyer, C. (2013). Accuracy of two-phase flow simulations: The Taylor Flow benchmark, PAMM-Proceedings in Applied Mathematics and Mechanics. PAMM-Proceedings in Applied Mathematics and Mechanics. 13 (1), 595-598. [Abstract] [doi] [www] [BibTex]

B

  • Bauer, C.; Wagner, C.; von Kameke, A. (2019). Kinetic energy budget of the largest scales in turbulent pipe flow. PHYSICAL REVIEW FLUIDS. 4 (22), 064607. [Abstract] [doi] [www] [BibTex]

  • Becker, M.; Tuinier, M.; Rollbusch, P.; Ludwig, M.; Franke, R.; Grünewald, M.; Schlüter, M. (2013). BMBF-Projekt "Multi-Phase". Chemie Ingenieur Technik. 85 (7), 989-991. [doi] [www] [BibTex]

  • Bork, O.; Schlüter, M.; Räbiger, N. (2005). The Impact of Local Phenomena on Mass Transfer in Gas-Liquid Systems. The Canadian Journal of Chemical Engineering. 83 (4), 658-666. [Abstract] [doi] [www] [BibTex]

  • Bothe, M.; Christlieb, M.-A.; Hoffmann, M.; Tedjasukmana, O.; Michaux, F.; Rollbusch, P.; Becker, M.; Schlüter, M. (2017). Bubble size and bubble velocity distribution in bubble columns under industrial conditions. The Canadian Journal of Chemical Engineering. 95 (5), 902-912. [Abstract] [doi] [www] [BibTex]

  • Bothe, M.; Schlüter, M. (2013). Modellierungsparameter für Blasenströmungen. Chemie Ingenieur Technik. 85 (7), 1023-1035. [Abstract] [doi] [www] [BibTex]

  • Bothe, M.; Schlüter, M. (2015). Experimental Study of Relative Bubble Velocity using a LED Pulsed Measurement Technique. [BibTex]

  • Butler, C.; Lalanne, B.; Sandmann, K.; Cid, E.; Billet, A.-M. (2018). Mass transfer in Taylor flow: Transfer rate modelling from measurements at the slug and film scale. International Journal of Multiphase Flow. 105 185-201. [Abstract] [doi] [www] [BibTex]

F

  • Falconi, C. J.; Lehrenfeld, C.; Marschall, H.; Meyer, C.; Abiev, R.; Bothe, D; Reusken, A.; Schlüter, M.; Wörner, M. (2016). Numerical and experimental analysis of local flow phenomena in laminar Taylor flow in a square mini-channel. Physics of Fluids. 28 (1), 012109. [Abstract] [doi] [www] [BibTex]

H

  • Hampel U.; Dittmeyer, R.; Patyk, A.; Wetzel, T.; Lange, R.; Freund, H.; Schwieger, W.; Grünewald, M.; Schlüter, M.; Petasch, U. (2013). Petasch, U.: Die Helmholtz-Energie-Allianz "Energieeffiziente Chemische Mehrphasenprozesse". Chemie Ingenieur Technik. 85 (7), 992-996. [Abstract] [doi] [www] [BibTex]

  • Hermann, P.; Timmermann, J.; Hoffmann, M.; Schlüter, M.; Hofmann, C.; Löb, P.; Ziegenbalg, D. (2018). Optimization of a Split and Recombine Micromixer by Improved Exploitation of Secondary Flows. Chem. Eng. J.. 334 1996-2003. [Abstract] [doi] [www] [BibTex]

  • Hoffmann, M.; Schlüter M.; Räbiger N. (2006). Experimental investigation of liquid-liquid mixing in T-shaped micro-mixers using µ-LIF and µ-PIV. Chemical Engineering Science. 61 (9), 2968-2976. [Abstract] [doi] [www] [BibTex]

  • Hoffmann, M.; Schlüter M.; Räbiger N. (2009). Microscale flow visualization. [Abstract] [doi] [BibTex]

  • Hoffmann, M.; Schlüter, M.; Räbiger, N. (2007). Untersuchung der Mischvorgänge in Mikroreaktoren durch Anwendung von Micro-LIF und Micro-PIV. Chemie Ingenieur Technik. 79 (7), 1067-1075. [Abstract] [doi] [www] [BibTex]

I

  • Iwakiri, M., Koichi T., Fujioka, S., Schlüter, M., Kastens, S., Tanaka, S. (2017). Mass Transfer from a Shrinking Single Microbubble Rising in Water. Japanese Journal of Multiphase Flow. 30 (5), 529-535. [Abstract] [doi] [www] [BibTex]

J

  • Jin, Y.; Schlüter, M.: (2019). Direct numerical simulation of the interfacial mass transfer of a bubble in self-induced turburlent flows. International Journal of Heat and Mass Transfer. 135 1248-1259. [Abstract] [doi] [www] [BibTex]

K

  • Kaltschmitt, M. ; Schlüter, M.; Schulz, D.; Skiba; M.; Özdirik, B. (2013). Stromerzeugung aus Windenergie. [doi] [BibTex]

  • Kameke, A.v.; Kastens, S.; Rüttinger, S.; Herres-Pawlis, S.; Schlüter, M,: (2019). How coherent structures dominate the residence time in a bubble wake: An experimental example. Chemical Engineering Science. 207 317-326. [Abstract] [doi] [www] [BibTex]

  • Kastens, S.; Hosoda, S.; Schlüter, M.; Tomiyama, A. (2015). Mass Transfer from Single Taylor Bubbles in Mini Channels. Chemical Engineering & Technology, special Issue: "Multiscale Multiphase Process Engineering" (Editorial: Schlüter, M.; Bothe, D.; Terasaka, K.). 38 (11), 1925-1932. [Abstract] [doi] [www] [BibTex]

  • Kastens, S.; Meyer, C.; Hoffmann, M.; Schlüter, M. (2017). Experimental Investigation and Modelling of Local Mass Transfer Rates in Pure and Contaminated Taylor Flows. [Abstract] [doi] [BibTex]

  • Kastens, S.; Timmermann, J.; Strassl, F.; Rampmaier, R. F.; Hoffmann, A.; Herres-Pawlis, S.; Schlüter, M. (2017). Test system for the investigation of reactive Taylor bubbles. Chem. Eng. Tech.. 40 (8), 1494-1501. [Abstract] [doi] [www] [BibTex]

  • Kaufhold, D.; Kopf, F.; Wolff, C.; Beutel, S.; Hilterhaus, L.; Hoffmann, M.; Scheper, T.; Schlüter, M.; Liese, A. (2013). Reaktive Absorption von Kohlenstoffdioxid in helikalen Hohlfasermembrankontaktoren. Chemie Ingenieur Technik. 85 (4), 476-483. [Abstract] [doi] [www] [BibTex]

  • Kaufhold, D.; Kopf, F.; Wolff, C.; Beutel, S.; Hilterhaus, L.; Hoffmann, M.; Scheper, T.; Schlüter, M.; Liese, A. (2013). Generation of Dean vortices and enhancement of oxygen transfer rates in membrane contactors for different hollow fiber geometries. Journal of Membrane Science. 423-424 342-347. [Abstract] [doi] [www] [BibTex]

  • Kopf, F.; Schlüter, M.; Kaufhold, D.; Hilterhaus, L.; Liese, A.; Wolff, C.; Beutel, S.; Scheper, T. (2011). Laminares Mischen in Miniatur-Hohlfasermembranreaktoren durch Ausnutzung von Sekundärströmungen (Teil 1). Chemie Ingenieur Technik. 83 (7), 1066-1073. [Abstract] [doi] [www] [BibTex]

  • Koynov, A.; Tryggvason, G.; Schlüter, M.; Khinast, J.G. (2006). Mass Transfer and Chemical Reactions in Reactive Deformable Bubble Swarms. Applied Physics Letters 88. 88 (13), 134102-1 - 134102-3. [Abstract] [doi] [www] [BibTex]

  • Kück, U. D.; Kröger, M.; Bothe, D.; Räbiger, N.; Schlüter, M.; Warnecke, H.-J. (2011). Skalenübergreifende Beschreibung der Transportprozesse bei Gas-Flüssig Reaktionen. Chemie Ingenieur Technik. 83 (7), 992-1004. [Abstract] [doi] [www] [BibTex]

  • Kück, U. D.; Schlüter, M.; Räbiger N. (2012). Experimental investigation of oxygen mass transfer at free rising gas bubbles in a reactive liquid. [BibTex]

  • Kück, U.D.; Schlüter, M.; Räbiger, N. (2012). Local Measurement of Mass Transfer Rate of a Single Bubble with and without a Chemical Reaction. Journal of Chemical Engineering of Japan. 45 (9), 708-712. [Abstract] [doi] [www] [BibTex]

  • Kück, U.D.; Schlüter, M.; Räbiger, N. (2009). Analyse des grenzschichtnahen Stofftransports an frei aufsteigenden Gasblasen durch simultane Vermessung von Strömungs- und Konzentrationsfeldern. Chemie Ingenieur Technik. 81 (10), 1599-1606. [Abstract] [doi] [www] [BibTex]

L

  • Laqua, K.; Malone, K.; Hoffmann, M.; Krause, D.; Schlüter, M. (2016). Methane bubble rise velocities under deep-sea conditions - influence of initial shape deformation, Colloids and Surfaces. Physicochemical and Engineering Aspects. 505 106-117. [Abstract] [doi] [www] [BibTex]

M

  • Malone, K.; Aman, Z.M.; Pesch, S.; Schlüter, M.; Krause, D. (2020). Jet Formation at the Spill Site and Resulting Droplet Size Distributions. 43-64. [Abstract] [doi] [BibTex]

  • Malone, K.; Pesch, S.; Schlüter, M.; Krause, D. (2018). Oil Droplet Size Distributions in Deep-Sea Blowouts: Influence of Pressure and Dissolved Gases, Environ. Environ. Sci. Technol. 52 (11), 6326-6333. [Abstract] [doi] [www] [BibTex]

  • Marx, J.; Berns, J. C.; Spille, C.; Minnten, M.; Schlüter, M.; Fiedler, B. (2019). A theoretical CFD study of the CVD process for the manufacturing of highly porous 3D carbon foam. Chemical Engineering & Technology. accepted, article in press [Abstract] [doi] [www] [BibTex]

  • Meinicke, S.; Möller, C.-O.; Dietrich, B.; Schlüter, M.; Wetzel, T. (2017). Experimental and numerical investigation of single-phase hydrodynamics in glass sponges by means of combined µPIV measurements and CFD simulation. Chemical Engineering Science. 160 131-143. [Abstract] [doi] [www] [BibTex]

  • Meyer, C.; Hoffmann, M.; Schlüter, M. (2014). Micro-PIV analysis of gas-liquid Taylor flow in a vertical oriented square shaped fluidic channel, International Journal of Multiphase Flow. International Journal of Multiphase Flow. 67 140-148. [Abstract] [doi] [www] [BibTex]

  • Mierka, O.; Munir, M.; Spille, C.; Timmermann, J.; Schlüter, M.; Turek, S. (2017). Reactive liquid flow simulation of micromixers based on grid deformation techniques. Chem. Eng. Tech.. 40 (8), 1408-1417. [Abstract] [doi] [www] [BibTex]

  • Mosler, S.; Hoffmann, M.; Schlüter, M.; Rajabi, N.; Müller, J. (2013). Numerical simulations and experimental investigations of two-phase flows in a Y-Y-shaped microreactor. Proceedings of the 3rd European Conference on Microfluidics - Microfluidics 2012, Heidelberg. conference paper: peer reviewed [BibTex]

  • Mosler, S.; Rajabi, N.; Hoffmann, M. ; Müller, J.; Schlüter, M. (2013). Numerical Simulations and Experimental Investigations of Two-Phase Flows in a Y-Y-Shaped Microreactor. International Journal of Microscale and Nanoscale Thermal and Fluid Transport Phenomena. 4 (3-4), 283-295. [www] [BibTex]

  • Murawski, S.A.; Schlüter, M.; Paris, C.B.; Aman, Z.M.: (2019). Resolving the dilemma of dispersant use for deep oil spill response. Environmental Research Letters. [Abstract] [www] [BibTex]

P

  • Paul, M.; Strassl, F.; Hoffmann, A.; Hoffmann, M.; Schlüter, M.; Herres-Pawlis, S. (2018). Reaction systems for bubbly flows. European Journal of Inorganic Chemistry. 2018 (20-21), 2101-2124. [Abstract] [doi] [www] [BibTex]

  • Pesch, S.; Jaeger, P.; Jaggi, A.; Malone, K.; Hoffmann, M.; Krause, D. (2018). Rise Velocity of Live-Oil Droplets in Deep-Sea Oil Spills. Environmental Engineering Science. 35 (4), 289-299. [Abstract] [doi] [www] [BibTex]

  • Pesch, S.; Schlüter, M.; Aman, Z.M.; Malone, K.; Krause, D.; Paris, C.B. (2020). Behavior of Rising Droplets and Bubbles: Impact on the Physics of Deep-Sea Blowouts and Oil Fate. 65-82. [Abstract] [doi] [BibTex]

R

  • Rajabi, N.; Hoffmann, M.; Bahnemann, J.; Zeng, A.-P.; Schlüter, M.; Müller, J. (2012). A Chaotic Advection Enhanced Microfluidic Split-and-Recombine Mixer for the Preparation of Chemical and Biological Probes. Journal of chemical engineering of Japan. 45 (9), 703-707. [Abstract] [doi] [www] [BibTex]

  • Rollbusch, P.; Bothe, M.; Becker, M.; Ludwig, M.; Grünewald, M.; Schlüter, M.; Franke, R. (2015). Bubble columns operated under industrially relevant conditions – Current understanding of design parameters. Chemical Engineering Science. 126 660-678. [Abstract] [doi] [www] [BibTex]

  • Rosseburg, A.; Fitschen, J.; Wutz, J.; Wucherpfennig, T.; Schlüter, M. (2018). Hydrodynamic inhomogeneities in large scale stirred tanks – Influence on mixing time. Chemical Engineering Science. 188 208-220. [Abstract] [doi] [www] [BibTex]

  • Rüttinger, S.; Hoffmann, M.; Schlüter, M. (2019). How do vortex structures influence boundary layer dynamics in gas-liquid systems?. Chemical Engineering & Technology. 42 (7), 1421-1426. [Abstract] [doi] [www] [BibTex]

  • Rüttinger, S.; Hoffmann, M.; Schlüter, M. (2018). Experimental analysis of a bubble wake influenced by a vortex street. special issue: "Flow and Heat or Mass Transfer in the Chemical Process Industry. 3 (1), 8. [Abstract] [doi] [www] [BibTex]

  • Rüttinger, S.; Hoffmann, M.; Schlüter, M. (2016). Measurements of instantaneous flow structure – influence of vortical structures on mass transfer in vicinity of a fixed bubble. pp. 9-1 - 9-9. [BibTex]

  • Rüttinger, S.; Hoffmann, M.; Schlüter, M. (2017). Estimation of turbulent kinetic energy dissipation rate using a two-camera high-speed PIV set-up. pp. 35-1 - 35-8. [BibTex]

  • Rüttinger, S.; Hoffmann, M.; Schlüter, M. (2018). Investigation of the influence of vortex structures on transport processes at fluidic interfaces. pp. 30.1 - 30.8. [BibTex]

  • Rüttinger, S.; Pesch, S.; Möller, C.-O.; Schlüter, M. (2015). Application of the endoscopic PIV measurement technique in bubbly flows - comparison with state-of-the-art PIV measurements. pp. 55-1 - 55-10. [BibTex]

  • Rüttinger, S.; Spille, C.; Hoffmann, M.; Schlüter, M. (2018). Laser-induced Fluorescence in Multiphase Systems. ChemBioEng Reviews. 4 (4), 1-18. [Abstract] [doi] [www] [BibTex]

  • Räbiger N.; Schlüter M. (2013). Bildung und Bewegung von Tropfen und Blasen. [doi] [BibTex]

  • Räbiger, N.; Schlüter, M. (2010). Formation and Movement of Bubbles and Drops. 1239-1270. [doi] [BibTex]

  • Räbiger, N.; Schlüter, M. (2006). Bildung und Bewegung von Tropfen und Blasen. [doi] [BibTex]

S

  • Scheid, S.; John, S.; Bork, O.; Parchmann, H.; Schlüter, M.; Räbiger, N.: (2004). Improved model for the calculation of homogeneous gas-liquid flows. [Abstract] [doi] [BibTex]

  • Schlüter, M. (2011). Lokale Messverfahren für Mehrphasenströmungen. Chemie Ingenieur Technik. 83 (7), 1084-1095. [Abstract] [doi] [www] [BibTex]

  • Schlüter, M. (2018). Bildung und Bewegung von Tropfen und Blasen in technischen Apparaten. [doi] [BibTex]

  • Schlüter, M.; Billet, A.-M.; Herres-Pawlis, S. (2018). Reactive Bubbly Flows. Chemical Engineering & Technology. 40 (8), 1384. [Abstract] [doi] [www] [BibTex]

  • Schlüter, M.; Hoffmann, M.; Räbiger, N. (2004). Theoretische und experimentelle Untersuchung der Mischvorgänge in T-förmigen Mikroreaktoren – Teil 2: Experimentelle Untersuchung des Strömungsmischen. Chemie Ingenieur Technik. 76 (11), 1682-1688. [doi] [www] [BibTex]

  • Schlüter, M.; Hoffmann, M.; Räbiger, N. (2008). Characterisation of micro fluidic devices by measurements with µ-PIV and CLSM. [Abstract] [BibTex]

  • Schlüter, M.; Scheid, S.; John, S.; Räbiger, N. (2005). Influence of local effects in three phase flows on power input in Jet-Loop Reactors. Power Technology. 151 (1-3), 68-76. [BibTex]

  • Schlüter, M.; Warnecke H.-J., Zehner, P. (2019). Reaktoren für Fluid-Fluid-Reaktionen: Schlaufenreaktoren. [Abstract] [doi] [BibTex]

  • Sellin, D; Hiessl, R.; Bothe, M.; Timmermann, J.; Becker, M.; Schlüter, M.; Liese, A. (2017). Simultaneous local determination of mass transfer and residence time distribuations in organic multiphase systems. Chemical Engineering Journal. 321 635-641. [Abstract] [doi] [www] [BibTex]

  • Stahlberg, N.; Mosler, S.; Schlüter, M. (2016). Writing, Calculating and Peer Feedback in a Mathematically-oriented Course for Process Engineers: Raising Motivation and Initiating Processes of Thinking and Learning. Journal of Academic Writing. 6 (1), 84-97. [Abstract] [doi] [www] [BibTex]

  • Szeliga, N.; Richter, S.; Bezecny, D.; Hoffmann, M.; Schlüter, M. (2016). Determination of the Influence of Tangential Momentum on Air-Core Vortex Formation at Pump Intakes by Means of Particle Image Velocimetry. pp. 30-1 - 30-9. [BibTex]

  • Szeliga, N.; Richter, S.; Bezecny, D.; Schlüter, M. (2015). Determination of tangential velocities in free surface vortices by high-speed PIV measurements. pp. 43-1 - 43-10. [BibTex]

  • Szeliga,N.; Elgot, L.H.v.; Bezecny, D.; Richter, S.; Hoffmann, M.; Schlüter, M.: (2019). Large Scale Experiments on the Formation of Surface Vortices with and without Vortex Suppression. Chemie Ingenieur Technik. accepted [doi] [BibTex]

T

  • T.B.P; Jaeger, P.; Gros, J.; Socolofsky, S.A.; Pesch, S.; Radovic, J.; Jaggi, A. (2020). Physical and Chemical Properties of Oil and Gas Under Reservoir and Deep-Sea Conditions. 25-42. [Abstract] [doi] [BibTex]

  • Tanaka, S.; Kastens, S.; Fujioka, S.; Schlüter, M.; Terasaka, K. (2019). Mass transfer from freely rising microbubbles in aqueous solutions of surfactant or salt. Chemical Engineering & Technology. accepted, article in press [Abstract] [doi] [www] [BibTex]

  • Timmermann, J.; Hoffmann, M.; Schlüter, M. (2016). Influence of bubble bouncing on mass transfer and chemical reaction. Chemical Engineering & Technology. 39 (10), 1955-1962. [Abstract] [doi] [www] [BibTex]

U

  • Urban, C.; Schlüter, M. (2015). Investigations on the stochastic nature of condensation induced water hammer. International Journal of Multiphase Flow. 67 1-9. [Abstract] [doi] [www] [BibTex]

W

  • Weiner, A.; Timmermann, J.; Pesci, C.; Grewe, J.; Hoffmann, M.; Schlüter, M.; Bothe, D. (2019). Experimental and numerical investigation of reactive species transport around a small rising bubble. Chemical Engineering Science. 1 (100007), in press. [Abstract] [doi] [www] [BibTex]

  • Wiedemann, M.; John, S.; Schlüter, M.; Kutschera, D.; Riener, F.-X.; Döring, W.; Eisenlauer, J. (2010). Einsatz des Strahlzonen-Schlaufenreaktors bei stofftransportlimitierten, mehrphasigen chemischen Reaktionen. Chemie Ingenieur Technik. 82 (3), 243-250. [Abstract] [doi] [www] [BibTex]

  • Wiedemann, M.; Räbiger, N.; Schlüter, M.; Eisenlauer, J.; Riener, F.-X.; Kutschera, D.; Neumann, S.; Döring, W. (2010). Scale-down des Strahlzonen-Schlaufenreaktors: Entwicklung eines Screening-Tools für transportlimitierte chemische Reaktionen. Chemie Ingenieur Technik. 83 (3), 349-357. [Abstract] [doi] [www] [BibTex]

  • Wiedemann, M.; Schlüter, M.; Räbiger, N. (2010). Investigation of the local specific energy dissipation rates in a jet-zone Loop Reactor for halogenation of ketones. The Canadian Journal of Chemical Engineering. 88 (3), 359-366. [Abstract] [doi] [www] [BibTex]