Tom Steffen

M.Sc.
Research Assistant

Contact

Tom Steffen, M. Sc.
E-6 Elektrische Energietechnik
  • Elektrische Energietechnik
Office Hours
Nach Vereinbarung
Harburger Schloßstraße 36,
21079 Hamburg
Building HS36, Room C2 1.006
Phone: +49 40 42878 2734
Logo

Research Projects

EffiziEntEE
Efficient integration of high shares of renewable energies in technically and economically integrated energy systems

EffiziEntEE

Efficient integration of high shares of renewable energies in technically and economically integrated energy systems

Federal Ministry for Economic Affairs and Climate Action (BMWK); Duration: 2022 to 2025

CyEntEE
I³-Lab Cyber Physical Energy Systems – Sustainability, Resilience and Economics

I³-Lab

CyEntEE

Cyber Physical Energy Systems – Sustainability, Resilience and Economics

Hamburg University of Technology (TUHH); Duration: 2020 to 2023

Publications

TUHH Open Research (TORE)

2023

2022

2021

Courses

Stud.IP
link to course in Stud.IP Studip_icon
Seminare.EIM: Seminar on Electromagnetic Compatibility and Electric Power Systems (Bachelor/Master-ET)
Semester:
WiSe 22/23
Course type:
Seminar
Lecturer:
Prof. Dr.-Ing. Christian Becker, Dr. Anna Katharina Kirf, Kathleen Potzahr, Prof. Dr. sc. techn. Christian Schuster, Marwan Mostafa, M.Sc., Mirco Woidelko, M.Sc., M.A., Dr. Cheng Yang, Christoph Klie, M.Sc., Johannes Heise, M.Sc., Dr.-Ing. Jan-Peter Heckel, Simon Stock, M.Sc., Hanko Ipach, M.Sc., Robert Annuth, M.Sc., Béla Wiegel, M.Sc., Tom Steffen, M.Sc.
Description:
Due to the energy transition, an increasing number of renewable energy plants are installed and connected to the grid. Their integration into the existing grid structure leads to challenging problems, which need to be solved to keep the grid stable. In addition to the conventional methods, the increasing availability of computational power allows to explore more computationally expensive algorithms and techniques. Besides optimization algorithms, machine learning approaches have gained popularity in the field of power engineering. Machine learning is a very diverse approach also used in multiple other disciplines and can be tailored to solve various problems. It offers a broad variety of techniques, networks, and algorithms with multiple advantages.
In this joint seminar, the different applications for optimization techniques and machine learning in electrical energy systems are presented and discussed.
The Seminar is open for Bachelor and Master Students in the electrical engineering program of TUHH.
PhD students from both Institutes present their current research, while Bachelor/Master students give presentations on topics related to either power technology or electromagnetic compatibility.
Area classification:
Studiendekanat Elektrotechnik, Informatik und Mathematik
Stud.IP informationen about this course:
Home institute: Studiendekanat Elektrotechnik, Informatik und Mathematik (E)
Registered participants in Stud.IP: 33
Postings: 2
Documents: 4

Supervised Theses

ongoing

2024

  • Ahrens, Daniel (2024). Entwicklung und Bewertung von Sensitivitätsanalysen innerhalb zellularer Niederspannungsnetze für ein zukünftiges Engpassmanagement nach EnWG §14a.

  • Malpricht, Marlin (2024). Entwicklung und Simulation eines kurativen Engpassmanagements für zellulare Verteilnetze und Bewertung potentieller Vorteile bei Kooperation von Übertragungs- und Verteilnetzbetreibern.

2023

  • Mülke, Luca (2023). Verbesserung von verteilten Kurzfrist-Netzzustandsprognosen mit maschinellem Lernen für kuratives Engpassmanagement in zukünftigen modernen sektorgekoppelten Niederspannungsnetzen.

2022

  • Fahrenkrug, Finn (2022). Entwicklung und Verifikation eines thermisch-elektrischen Leitungsmodells für das Engpassmanagement im elektrischen Verteilnetz.

completed

2023

  • Buse, Alexander (2023). Entwicklung und Simulation eines kurativen Engpassmanagements für Niederspannungszellen innerhalb eines zellularen Energiesystems.

  • Merling, Stefan (2023). Analyse und Bewertung von Energieangeboten in zellular betriebenen Niederspannungsnetzen mit lokalem Markt.

2022

  • Hoegel, N. (2022). Untersuchung und Bewertung von Netzzustandschätzung und -Prognosen unter Berücksichtigung von Fehlerszenarien bezüglich der Informations- und Kommunikationstechnik.

  • Hoegel, N. (2022). Entwicklung und Simulation eines verteilten Netzzustandsprognoseverfahrens für zellulare elektrische Energiesysteme. [pdf]

  • Rogoll, H. (2022). Entwicklung und Simulation von sozialen Beziehungen benachbarter Zellen zur Eigenverbrauchsoptimierung innerhalb eines zellularen Energiesystems mittels eines Multiagentensystem. [pdf]

  • Westphal, J. (2022). Implementierung und Bewertung einer Co-Simulation mit der Plattform Mosaik zur Kopp-lung von Modelica mit einem in Python implementierten Optimierungsalgorithmus.

2021

  • Luo, K. (2021). Entwicklung und Simulation eines Wechselrichtermodells für die Stabilitätsuntersuchung im winkelgeregelten Betrieb zukünftiger Stromnetze.

  • Schenk, C. (2021). Entwicklung und Optimierung der Beschaffungsstrategie für abzuregelnde Energie im Redispatch 2.0-Kontext basierend auf einer Vorhersagbarkeitsanalyse von Netzengpässen.