Mirco Fabian Woidelko

M.Sc., M.A.
Research Assistant

Contact

Mirco Woidelko, M.Sc., M.A.
E-6 Elektrische Energietechnik
  • Elektrische Energietechnik
Office Hours
nach Vereinbarung
Harburger Schloßstraße 22a,
21079 Hamburg
Building HS22a, Room 2.004
Phone: +49 40 42878 4093
Logo

Research Project

DisrupSys
Disruptive functions and technology for angle-based integrated grid operation in converter-dominated power systems with predominantly renewable energy supply

DisrupSys

Disruptive functions and technology for angle-based integrated grid operation in converter-dominated power systems with predominantly renewable energy supply

Federal Ministry for Economic Affairs and Climate Action (BMWK); Duration: 2021 to 2024

Publications

TUHH Open Research (TORE)

Courses

Stud.IP
link to course in Stud.IP Studip_icon
GPU Architectures and Programming
Semester:
SoSe 24
Course type:
Lecture
Course number:
lv3039_s24
Lecturer:
Prof. Dr. Sohan Lal
Description:
In this module, you will study the architecture and programming of GPUs. Please find below a brief outline of the lectures: - Review of computer architecture basics - measuring performance, benchmarks, five-stage RISC pipeline, caches - GPU basics - the evolution of GPU computing, a high-level overview of a GPU architecture - GPU programming with CUDA - program structure, CUDA threads organization, warp/thread-block scheduling - GPU (micro) architecture - streaming multiprocessors, single instruction multiple threads (SIMT) core design, tensor cores for deep learning, RT cores for ray tracing, mixed-precision support - GPU memory hierarchy - banked register file and operand collectors, shared memory, GPU caches (differences w.r.t. CPU caches), global memory - Branch and memory divergence - branch handling, stack-based reconvergence, memory coalescing, coalescer design - Barriers and synchronization - Temporal and spatial locality exploitation challenges in GPU caches - Global memory- high throughput requirements, GDDR/HBM, memory bandwidth optimization techniques - GPU research issues - performance bottlenecks, GPU power modeling, high-power consumption/energy efficiency, GPU security - Application case study - deep learning - Cycle-accurate simulators for GPUs In addition to lectures, a semester-long problem-based project will augment the learning in the lectures. Several topics related to GPUs will be proposed. You are required to choose a topic and work on it. It is possible to work in groups. There will be (bi-) weekly meetings to discuss progress and problems. In addition to the semester-long project, there will be assignments to teach CUDA programming. Course Evaluation: Oral examination Duration: 30 minutes
Pre-requisites:
- Basic course on computer architecture and C/C++ programming
Learning organisation:
- Weekly lecture - Weekly lab
Performance accreditation:
Oral exam + Lab assignments
Area classification:
Studiendekanat Elektrotechnik, Informatik und Mathematik
ECTS credit points:
6
Stud.IP informationen about this course:
Home institute: E-EXK5 Massively Parallel Systems
Registered participants in Stud.IP: 92
Postings: 2
Documents: 1

Supervised Theses

ongoing
completed

2023

  • Babendererde, A. (2023). Regelung eines Umrichters zum Anschluss eines Wasserstoffspeicherkraftwerks an die Höchstspannungsebene.

2022

  • Lim, I. (2022). Modelling and Integration of a Hydrogen Storage Power Plant in the 10-Machine New-England Power System.

  • Lindner, J. (2022). Primärregelungskonzepte für einen Batteriepufferspeicher eines Wasserstoffspeicherkraftwerkes.

  • Rieckborn, N. (2022). Modellierung des Umwandlungsprozesses eines Wasserstoffspeicherkraftwerks.