Dr.-Ing. Jan-Peter Heckel

Research Assistant

Contact

Dr.-Ing. Jan-Peter Heckel
E-6 Elektrische Energietechnik
  • Elektrische Energietechnik
Office Hours
nach Vereinbarung (Terminabsprache per E-Mail)
Harburger Schloßstraße 36,
21079 Hamburg
Building HS36, Room C3 0.009
Phone: +49 40 42878 2381
Logo

Research Projects

VeN²uS
Networked grid protection systems - Adaptive and interconnected

VeN²uS

Networked grid protection systems - Adaptive and interconnected

Federal Ministry for Economic Affairs and Climate Action (BMWK); Duration: 2021 to 2024

ResiliEntEE
Resilience of integrated energy systems with a high share of renewables

ResiliEntEE

Resilience of integrated energy systems with a high share of renewables

Hamburg University of Technology (TUHH); Duration: 2017 to 2021

Publications

TUHH Open Research (TORE)

2023

2022

2021

2020

2019

Courses

Stud.IP
link to course in Stud.IP Studip_icon
Software für Eingebettete Systeme
Subtitle:
Module: Software für Eingebettete Systeme
Semester:
SoSe 24
Course style:
Lecture + Lab
Course type:
Lecture
Course number:
lv1069_s24
Lecturer:
Prof. Dr. Bernd-Christian Renner, Peter Oppermann, Johannes Göpfert, Fabian Steinmetz
Description:
Embedded systems are present everywhere in our daily lives and are integral parts of modern engineering. They start with smart lightbulbs or electric door openers and continue with control units for automotive applications or industrial machines. Furthermore, safety-critical systems, such as airbags or ventilators, are controlled with an embedded system.

Course Objectives

In this course, the students learn to develop software for embedded systems. At first, the students learn the concepts of embedded systems, including hardware structures and software design. Afterwards, they are introduced to microcontrollers and their functionalities, such as input and output registers, timers, interrupts, and bus systems. At the end of this course, the students know how to develop, implement, and test software for embedded systems.

Prerequisites

Students taking this course must be familiar with the C programming language and its concepts, for example, pointers and procedural programming. Furthermore, basic knowledge of software design and electrical engineering is helpful for this course.

Lab

A lab accompanies the lecture, where the students learn to program a microcontroller and apply the lecture’s content. Using an ATmega32U4, the students develop a hardware-oriented and low-level software library to address digital input and output pins, read analog to digital (ADC) converters for analog sensors, use hardware timers and interrupts, and control an actuator. At the end of the lab, the students combine all functionalities and implement software for different applications.
Performance accreditation:
Written Exam
ECTS credit points:
6
Stud.IP informationen about this course:
Home institute: Institut für Autonome Cyber-Physische Systeme (E-24)
Registered participants in Stud.IP: 143
Postings: 4
Documents: 23

Supervised Theses

ongoing

2024

  • Kumar, Melvin (2024). Automatische Erstellung von Simulationsmodellen für die Untersuchung der Auswirkung einer Netzaggregation auf die Kurschlusseigenschaften eines Netzes.

completed

2024

  • Helmich, L. M. (2024). Entwicklung und Simulation eines Effektivwertmodells für STATCOM-Anlagen mit neuartigen Regelstrategien für Pendeldämpfungen in PowerFactory.

2023

  • Engemann, T. (2023). Nachbildung des Betriebsverhaltens einer Windkraftanlage in einer Laborumgebung.

  • Helmich, L. M. (2023). Entwicklung und Simulation einer Regelstrategie für die Pendeldämpfung durch STATCOM-Geräte.

  • Heunda, J. (2023). Dynamische Lastmodellierung zur adaptiven Schutzparametrierung in elektrischen Verteilnetzen.

  • Hube, P. (2023). Quantitative Bewertung des Mehrwerts einer adaptiven gegenüber einer konventionellen Netzschutzparametrierung.

  • Hube, P. (2023). Modellierung und Analyse des Kurzschlussverhaltens von Typ 4 umrichtergekoppelten Windkraftanlagen.

  • Kock am Brink, J. (2023). Vergleich von Spannungsstabilitätskennzahlen und deren Eignung als Resilienzindex.

  • Stoffregen, J. F. (2023). Implementierung und Simulation eines Testnetzes für die Mehrwertbetrachtung eines adaptiven Netzschutzes.

2022

  • Hillebrecht, T. (2022). Entwicklung und Implementierung eines Verfahrens zur Online-Detektion von Spannungsin-stabilitäten in gekoppelten Energiesystemen.

  • Schill, G. (2022). Untersuchung von Störungskaskaden in sektorengekoppelten Energiesystemen mittels einer Resilienzkennzahl.

2021

  • Ducci, D. (2021). Untersuchung der Bereitstellung von Regelleistung durch virtuelle Kraftwerke in sektorengekoppelten Energiesystemen.

  • Gomez Anccas, E. D. (2021). Entwicklung einer Methodik zur quantitativen Untersuchung und Bewertung dynamischer Interaktionen in gekoppelten Energiesystemen.

2020

  • Dressel, M. (2020). Untersuchung von spannungsstabilitätsbedingten Resilienzveränderungen im norddeutschen Energiesystem.

  • Gomez Anccas, E. D. (2020). Entwicklung eines Testmodells zur Untersuchung dynamischer Interaktionen in gekoppelten Energiesystemen.

  • Luo, K. (2020). Untersuchung der Auswirkungen des Netzentwicklungsplans 2025 auf die Netztopologie in Norddeutschland.

2019

  • Bredenberg, H. (2019). Optimierungssystem zur Netzplanung für die Mittelspannungsebene unter Berücksichtigung möglicher Entwicklungsszenarien.

  • Faili, Z. (2019). Analysis of the Voltage Stability in the Northern German Electrical Grid with Dynamic Simulation.

  • Häbel, I. (2019). Aggregation von Netzdaten für die numerisch effiziente Simulation gekoppelter Energiesysteme.

  • Krupp, M. (2019). Entwicklung und Integration eines Simulationsmodells für vermaschte Mehrpunkt-HGÜ-Systeme im Rahmen der Power System Toolbox.

2018

  • Dressel, M. (2018). Entwicklung und Integration eines Testnetzes zur Nachbildung des elektrischen Energiesystems von Nordeutschland für die Simuation energietechnischer Szenarien.