The course covers in general the topics related to digitalisation of power systems (or in other word Smart Grids). First, the students learn the drivers of smart grids such as distribution generation, energy storages and micro-grids. The digitalisation technologies/tools related to smart grids such as advanced metering, Internet of Things (IoT) and Computational Intelligence (AI/ML) are introduced and the students learn how to use these tools to secure the optimal operation of future distribution grids with high penetration of renewables.
In addition to theoretical aspect, the practical and real-life examples of Smart Grid trends are presented by industrial experts.
Pre-requisites:
Fundamentals of Electrical Engineering,
Mathematics I, II, III
Electrical Power Systems I
Electrical Power Systems II (or taken in parallel)
Learning organisation:
This course includes:
- Lectures
- Discussion sessions
- Lab exercise
- Mini project
Performance accreditation:
Oral and written exam
Area classification:
Studiendekanat Elektrotechnik, Informatik und Mathematik
Helmich, L. M. (2023). Entwicklung und Simulation einer Regelstrategie für die Pendeldämpfung durch STATCOM-Geräte.
Kamma, J. (2023). Umrichtermodellierung zur Repräsentation von Interaktionen im Sinne der Converter-Driven Stability.
Mißfeldt, C. (2023). Einfluss von Zeitverzögerungen auf die Converter-Driven Stability.
Rosenau, Y. (2023). Einfluss netzbildender Umrichter-Regelungsstrukturen auf die "Converter-Driven Stability".
completed
2023
Chouiter, B. (2023). Dynamic Phasor Modelling and Comparison to Cassical EMT Models.
2022
Kumar, M. (2022). Modellierung und Vergleich des Frequenzverhaltens dezentraler Anlagen mit netzbildenden Eigenschaften oder beigestellter Schwungmasse.
Lim, I. (2022). Modelling and Integration of a Hydrogen Storage Power Plant in the 10-Machine New-England Power System.
Rieckborn, N. (2022). Modellierung des Umwandlungsprozesses eines Wasserstoffspeicherkraftwerks.