Adryan, P.; Brandenburg, G.; Hameister, D.; Höffer, D.; Illner, S.; Kragl, U.; Moritz, H.-U. ; Müller, C.; Pauer, W.; Räbiger, N.; Rößner, F.; Schlüter, M.; Sell, M.; Sleumer, K. (2012). Mixing and Reactions in Microchannels – an Educational Approach Using the Internet. Chemie Ingenieur Technik. 4. (9), 1505-1512 [Abstract]
[doi][www]
Aland, S.; Lehrenfeld, C.; Marschall, H.; Meyer, C. (2013). Accuracy of two-phase flow simulations: The Taylor Flow benchmark, PAMM-Proceedings in Applied Mathematics and Mechanics. PAMM-Proceedings in Applied Mathematics and Mechanics. 13. (1), 595-598 [Abstract]
[doi][www]
Bauer, C.; Wagner, C.; von Kameke, A. (2019). Kinetic energy budget of the largest scales in turbulent pipe flow. PHYSICAL REVIEW FLUIDS. 4. (22), 064607 [Abstract]
[doi][www]
Becker, M.; Tuinier, M.; Rollbusch, P.; Ludwig, M.; Franke, R.; Grünewald, M.; Schlüter, M. (2013). BMBF-Projekt "Multi-Phase". Chemie Ingenieur Technik. 85. (7), 989-991 [doi][www]
Bork, O.; Schlüter, M.; Räbiger, N. (2005). The Impact of Local Phenomena on Mass Transfer in Gas-Liquid Systems. The Canadian Journal of Chemical Engineering. 83. (4), 658-666 [Abstract]
[doi][www]
Bothe, M.; Christlieb, M.-A.; Hoffmann, M.; Tedjasukmana, O.; Michaux, F.; Rollbusch, P.; Becker, M.; Schlüter, M. (2017). Bubble size and bubble velocity distribution in bubble columns under industrial conditions. The Canadian Journal of Chemical Engineering. 95. (5), 902-912 [Abstract]
[doi][www]
Bothe, M.; Schlüter, M. (2013). Modellierungsparameter für Blasenströmungen. Chemie Ingenieur Technik. 85. (7), 1023-1035 [Abstract]
[doi][www]
Butler, C.; Lalanne, B.; Sandmann, K.; Cid, E.; Billet, A.-M. (2018). Mass transfer in Taylor flow: Transfer rate modelling from measurements at the slug and film scale. International Journal of Multiphase Flow. 105. 185-201 [Abstract]
[doi][www]
Büscher, N.; Spille, C.; Kracht, J.; Sayogo, G.; Dawood, A.W.H.; Maiwald, M.I.; Herzog, D.; Schlüter, M.; Liese, A.; (2020). Counter-Currently Operated Reactive Extractor with Additively Manufactured Enzyme Carrier Structure. Organic Process Research & Development. 24. (9), 1621-1628 [Abstract]
[doi]
Colombi, R.; Rohde, N.; Schlüter, M.; von Kameke, A. (2022). Coexistence of Inverse and Direct Energy Cascades in Faraday Waves. fluids. 7. (148), [Abstract]
[doi][www]
Colombi, R.; Schlüter, M.; Kameke, A.v.; (2020). Three Dimensional Flows Beneath a Thin Layer of 2D turbulence Induced by Faraday Waves. Experiments in Fluids. 62. (8), [Abstract]
[doi]
Faillettaz, R.; Paris, C.B.; Vaz, A.C.; Perlin, N.; Aman, Z.M.; Schlüter, M.; Murawski, S.A.; (2021). The choice of droplet size probability distribution function for oil spill modeling is not trivial. Marine Pollution Bulletin. 163. [Abstract]
[doi]
Falconi, C. J.; Lehrenfeld, C.; Marschall, H.; Meyer, C.; Abiev, R.; Bothe, D; Reusken, A.; Schlüter, M.; Wörner, M. (2016). Numerical and experimental analysis of local flow phenomena in laminar Taylor flow in a square mini-channel. Physics of Fluids. 28. (1), 012109 [Abstract]
[doi][www]
Fitschen, J.; Hofmann, S.; Wutz, J.; Kameke, A. v.; Hoffmann M.; Wucherpfennig T.; Schlüter, M. (2021). Novel Evaluation Method to Determine the Local Mixing Time Distribution in Stirred Tank Reactors. Chemical Engineering Science: X. 10. [Abstract]
[doi]
Fitschen, J.; Maly, M.; Rosseburg, A.; Wutz, J.; Wucherpfennig, T.; Schlüter, M.; (2019). Influence of Spacing of Multiple Impellers on Power Input in an Industrial-Scale Aerated Stirred Tank Reactor. Chemie Ingenieur Technik. 91. 1794-1801 [Abstract]
[doi]
Freiberger F.; Budde, J.; Ates, E.; Schlüter, M.; Pörtner, R.; Möller, J. (2022). New Insights from Locally Resolved Hydrodynamics in Stirred Cell Culture Reactors. Processes. 10. (107), [Abstract]
[doi]
Frey T.; Kexel F.; Dittmer K.R.; Bohne S.; Hoffmann M.; Trieu H.K.; Schlüter M. (2022). A Novel Approach for Visualizing Mixing Phenomena of Reactive Liquid-Liquid Flows in Milli- and Micro-Channels. Frontiers in Chemical Engineering. 4. 874019 [Abstract]
[doi]
Frey, T.; Kexel, F.; Grabellus, M.; My Le, X.; Hoffmann, M.; Herbstritt, F.; Grünewald, M.; Schlüter, M.; (2024). Local analysis of micro mixing for the Villermaux-Dushman protocol by using the imaging UV-Vis spectroscopy. Chemical Engineering Research and Design. [Abstract]
[doi]
Frey, T.; Schlütemann R.; Schwarz, S.; Biessey, P.; Hoffmann, M.; Grünewald, M.; Schlüter, M. (2021). CFD analysis of asymmetric mixing at different inlet configurations of a split-and-recombine micro mixer. Journal of Flow Chemistry. 11. 599–609 [Abstract]
[doi]
Gaugler, L.; Hofmann, S.; Schlüter, M.; Takors, R. (2024). Mimicking CHO large-scale effects in the single multicompartment bioreactor: A new approach to access scale-up behavior. Biotechnology and Bioengineering. 1-13 [Abstract]
[doi]
Gaugler, L; Mast, Y.; Fitschen, J.; Hofmann, S.; Hoffmann, M.; Schlüter, M. (2022). Scaling-down biopharmaceutical production processes via a single multi-compartment bioreactor (SMCB). Engineering in Life Sciences. 12 [Abstract]
[doi]
Hampel U.; Dittmeyer, R.; Patyk, A.; Wetzel, T.; Lange, R.; Freund, H.; Schwieger, W.; Grünewald, M.; Schlüter, M.; Petasch, U. (2013). Petasch, U.: Die Helmholtz-Energie-Allianz "Energieeffiziente Chemische Mehrphasenprozesse". Chemie Ingenieur Technik. 85. (7), 992-996 [Abstract]
[doi][www]
Hermann, P.; Timmermann, J.; Hoffmann, M.; Schlüter, M.; Hofmann, C.; Löb, P.; Ziegenbalg, D. (2018). Optimization of a Split and Recombine Micromixer by Improved Exploitation of Secondary Flows. Chem. Eng. J.. 334. 1996-2003 [Abstract]
[doi][www]
Hoffmann, M.; Schlüter M.; Räbiger N. (2006). Experimental investigation of liquid-liquid mixing in T-shaped micro-mixers using µ-LIF and µ-PIV. Chemical Engineering Science. 61. (9), 2968-2976 [Abstract]
[doi][www]
Hoffmann, M.; Schlüter, M.; Räbiger, N. (2007). Untersuchung der Mischvorgänge in Mikroreaktoren durch Anwendung von Micro-LIF und Micro-PIV. Chemie Ingenieur Technik. 79. (7), 1067-1075 [Abstract]
[doi][www]
Hofmann, S.; Buntkiel, L.; Rautenbach, R.; Gaugler, L.; Ma, Y.; Haase, I.; Fitschen, J.; Wucherpfennig, T.; Reinecke, S. F.; Hoffmann, M.; Takors, R.; Hampel, U.; Schlüter, M. (2024). Experimental analysis of lifelines in a 15,000 L bioreactor by means of Lagrangian Sensor Particles. Chemical Engineering Research and Design. 205. 695-712 [Abstract]
[doi]
Hofmann, S.; Weiland, C.; Fitschen, J.; von Kameke, A., Hoffmann, M.; Schlüter, M. (2022). Lagrangian sensors in a stirred tank reactor: Comparing trajectories from 4D-Particle Tracking Velocimetry and Lattice-Boltzmann simulations. Chemical Engineering Journal. 449. [Abstract]
[doi]
Hu, X.; Spille, C.; Schlüter, M.; Smirnova, I. (2020). Smart Structures—Additive Manufacturing of Stimuli-Responsive Hydrogels for Adaptive Packings. Industrial & Engineering Chemistry Research. 59. (43), 19458–19464 [Abstract]
[doi]
Iwakiri, M., Koichi T., Fujioka, S., Schlüter, M., Kastens, S., Tanaka, S. (2017). Mass Transfer from a Shrinking Single Microbubble Rising in Water. Japanese Journal of Multiphase Flow. 30. (5), 529-535 [Abstract]
[doi][www]
Jin, Y.; Cavero, R.F.; Weiland, C.; Hoffmann, M.; Schlüter, M. (2023). Effects of bubble-induced turbulence on interfacial species transport: A direct numerical simulation study. Chemical Engineering Science. 279. 118934 [Abstract]
[doi][www]
Jin, Y.; Schlüter, M.: (2019). Direct numerical simulation of the interfacial mass transfer of a bubble in self-induced turburlent flows. International Journal of Heat and Mass Transfer. 135. 1248-1259 [Abstract]
[doi][www]
Jin, Y.; Weiland, C.; Hoffmann, M.; Schlüter, M. (2023). Direct Numerical Simulation of Bubble Collision, Bounce and Coalescence in Bubble-Induced Turbulence. Chemical Engineering Science. 284. 119502 [Abstract]
[doi]
Kameke, A.v.; Kastens, S.; Rüttinger, S.; Herres-Pawlis, S.; Schlüter, M,: (2019). How coherent structures dominate the residence time in a bubble wake: An experimental example. Chemical Engineering Science. 207. 317-326 [Abstract]
[doi][www]
Kastens, S.; Hosoda, S.; Schlüter, M.; Tomiyama, A. (2015). Mass Transfer from Single Taylor Bubbles in Mini Channels. Chemical Engineering & Technology, special Issue: "Multiscale Multiphase Process Engineering" (Editorial: Schlüter, M.; Bothe, D.; Terasaka, K.). 38. (11), 1925-1932 [Abstract]
[doi][www]
Kastens, S.; Timmermann, J.; Strassl, F.; Rampmaier, R. F.; Hoffmann, A.; Herres-Pawlis, S.; Schlüter, M. (2017). Test system for the investigation of reactive Taylor bubbles. Chem. Eng. Tech.. 40. (8), 1494-1501 [Abstract]
[doi][www]
Kaufhold, D.; Kopf, F.; Wolff, C.; Beutel, S.; Hilterhaus, L.; Hoffmann, M.; Scheper, T.; Schlüter, M.; Liese, A. (2013). Reaktive Absorption von Kohlenstoffdioxid in helikalen Hohlfasermembrankontaktoren. Chemie Ingenieur Technik. 85. (4), 476-483 [Abstract]
[doi][www]
Kaufhold, D.; Kopf, F.; Wolff, C.; Beutel, S.; Hilterhaus, L.; Hoffmann, M.; Scheper, T.; Schlüter, M.; Liese, A. (2013). Generation of Dean vortices and enhancement of oxygen transfer rates in membrane contactors for different hollow fiber geometries. Journal of Membrane Science. 423-424. 342-347 [Abstract]
[doi][www]
Kexel, F.; Kameke, A.v.; Hoffmann, M.; Schlüter, M. (2022). The influence of fluid dynamics on the selectivity of fast gas–liquid reactions in methanol. Chemical Engineering and Processing - Process Intensification. [Abstract]
[doi]
Kexel, F.; Kameke, A.v.; Oßberger, M.; Hoffmann, M.; Klüfers, P.; Schlüter, M. (2020). Bildgebende UV/VIS Spektroskopie zur Untersuchung des Einflusses der Fluiddynamik auf die Selektivität und Ausbeute von schnellen konkurrierenden konsekutiven gasflüssig Reaktionen. Chemie Ingenieur Technik. 93. (1-2), 297-305 [Abstract]
[doi][www]
Kexel, F.; Kameke, A.v.; Tenhaus, J.; Hoffmann, M.; Schlüter, M. (2021). Taylor bubble study of the influence of fluid dynamics on yield and selectivity in fast gas-liquid reactions. Chemie Ingenieur Technik. 93. (5), 830-837 [Abstract]
[doi]
Kopf, F.; Schlüter, M.; Kaufhold, D.; Hilterhaus, L.; Liese, A.; Wolff, C.; Beutel, S.; Scheper, T. (2011). Laminares Mischen in Miniatur-Hohlfasermembranreaktoren durch Ausnutzung von Sekundärströmungen (Teil 1). Chemie Ingenieur Technik. 83. (7), 1066-1073 [Abstract]
[doi][www]
Koynov, A.; Tryggvason, G.; Schlüter, M.; Khinast, J.G. (2006). Mass Transfer and Chemical Reactions in Reactive Deformable Bubble Swarms. Applied Physics Letters 88. 88. (13), 134102-1 - 134102-3 [Abstract]
[doi][www]
Kursula, L.; Kexel, F.; Fitschen, J.; Hoffmann, M.; Schlüter, M.; Kameke, A.v.; (2022). Unsteady Mass Transfer in Bubble Wakes Analyzed by Lagrangian Coherent Structures in a Flat-Bed Reactor. Processes. 10. (12), [Abstract]
[doi]
Kuschel, M.; Fitschen, F.; Hoffmann, M.; Kameke, A. v.; Wucherpfennig, T.; Schlüter, M. (2021). Validation of Novel Lattice Boltzmann Large Eddy Simulations (LB LES) for Equipment Characterization in Biopharma. Processes. 9. (6), 950 [Abstract]
[doi]
Kück, U. D.; Kröger, M.; Bothe, D.; Räbiger, N.; Schlüter, M.; Warnecke, H.-J. (2011). Skalenübergreifende Beschreibung der Transportprozesse bei Gas-Flüssig Reaktionen. Chemie Ingenieur Technik. 83. (7), 992-1004 [Abstract]
[doi][www]
Kück, U.D.; Schlüter, M.; Räbiger, N. (2012). Local Measurement of Mass Transfer Rate of a Single Bubble with and without a Chemical Reaction. Journal of Chemical Engineering of Japan. 45. (9), 708-712 [Abstract]
[doi][www]
Kück, U.D.; Schlüter, M.; Räbiger, N. (2009). Analyse des grenzschichtnahen Stofftransports an frei aufsteigenden Gasblasen durch simultane Vermessung von Strömungs- und Konzentrationsfeldern. Chemie Ingenieur Technik. 81. (10), 1599-1606 [Abstract]
[doi][www]
Laqua, K.; Malone, K.; Hoffmann, M.; Krause, D.; Schlüter, M. (2016). Methane bubble rise velocities under deep-sea conditions - influence of initial shape deformation, Colloids and Surfaces. Physicochemical and Engineering Aspects. 505. 106-117 [Abstract]
[doi][www]
Llamas, C.G.; Spille, C.; Kastens, S.; Paz, D.G.; Schlüter, M.; von Kameke, A. (2020). Potential of Lagrangian Analysis Methods in the Study of Chemical Reactors. Chemie Ingenieur Technik. 95. (5), 540-553 [Abstract]
[doi]
Malone, K.; Pesch, S.; Schlüter, M.; Krause, D. (2018). Oil Droplet Size Distributions in Deep-Sea Blowouts: Influence of Pressure and Dissolved Gases, Environ. Environ. Sci. Technol. 52. (11), 6326-6333 [Abstract]
[doi][www]
Maly, M.; Schaper, S.; Kuwertz, R.; Hoffmann, M.; Heck, J.; Schlüter, M. (2022). Scale-Up Strategies of Jet Loop Reactors for the Intensification of Mass Transfer Limited Reactions. Processes. 10. (8), [Abstract]
[doi][www]
Marx, J.; Berns, J. C.; Spille, C.; Mintken, M.; Schlüter, M.; Fiedler, B. (2019). Theoretical Computational Fluid Dynamics Study of the Chemical Vapor Deposition Process for the Manufacturing of a Highly Porous 3D Carbon Foam. Chemical Engineering & Technology. 42. 1240-1246 [Abstract]
[doi][www]
Matthes, S.; Kastens, S.; Thomas, B.; Ohde, D.; Bubenheim, P.; Liese, A.; Tanaka, S.; Terasaka, K.; Schlüter, M. (2018). Characterization of Fine Bubbles for Biocatalytic Processes. 1299-1312 [www]
Matthes, S.; Ohde, D.; Hoffmann, M.; Bubenheim, P.; Liese, A.; Terasaka, K.; Schlüter, M. (2020). Hydrodynamic and Mass Transfer Correlation in a Microbubble Aerated Stirred Tank Reactor. Journal of Chemical Engineering of Japan. 53. (10), 577-584 [Abstract]
[doi]
Matthes. S.; Merbach, T.; Fitschen, J.; Hoffmann, M.; Schlüter, M.; (2021). Influence of counterdiffusion effects on mass transfer coefficients in stirred tank reactors. Chemical Engineering Journal Advances. 8. [Abstract]
[doi]
Meinicke, S.; Möller, C.-O.; Dietrich, B.; Schlüter, M.; Wetzel, T. (2017). Experimental and numerical investigation of single-phase hydrodynamics in glass sponges by means of combined µPIV measurements and CFD simulation. Chemical Engineering Science. 160. 131-143 [Abstract]
[doi][www]
Meyer, C.; Hoffmann, M.; Schlüter, M. (2014). Micro-PIV analysis of gas-liquid Taylor flow in a vertical oriented square shaped fluidic channel, International Journal of Multiphase Flow. International Journal of Multiphase Flow. 67. 140-148 [Abstract]
[doi][www]
Mierka, O.; Munir, M.; Spille, C.; Timmermann, J.; Schlüter, M.; Turek, S. (2017). Reactive liquid flow simulation of micromixers based on grid deformation techniques. Chem. Eng. Tech.. 40. (8), 1408-1417 [Abstract]
[doi][www]
Mosler, S.; Hoffmann, M.; Schlüter, M.; Rajabi, N.; Müller, J. (2013). Numerical simulations and experimental investigations of two-phase flows in a Y-Y-shaped microreactor. Proceedings of the 3rd European Conference on Microfluidics - Microfluidics 2012, Heidelberg. conference paper: peer reviewed.
Mosler, S.; Rajabi, N.; Hoffmann, M. ; Müller, J.; Schlüter, M. (2013). Numerical Simulations and Experimental Investigations of Two-Phase Flows in a Y-Y-Shaped Microreactor. International Journal of Microscale and Nanoscale Thermal and Fluid Transport Phenomena. 4. (3-4), 283-295 [www]
Murawski, S.A.; Schlüter, M.; Paris, C.B.; Aman, Z.M.: (2019). Resolving the dilemma of dispersant use for deep oil spill response. Environmental Research Letters. [Abstract]
[www]
Niehaus, D.; Hofmann, S.; Kumar, S.B.; Hoffmann, M.; Cisneros-Aguirre, J.; Schlüter, M. (2022). Experimental Characterisation and Field Experience of a Reusable, Modified Polyurethane Foam for the Mechanical Clean-Up of Oil Spills on the Sea Surface. Journal of Marine Science and Engineering. 10. (10), [Abstract]
[doi][www]
Ohde, D.; Thomas, B.; Matthes, S.; Percin, Z.; Engelmann, C.; Bubenheim, P.; Terasaka, K.; Schlüter, M.; Liese, A. (2019). Fine Bubble?based CO2 Capture Mediated by Triethanolamine Coupled to Whole Cell Biotransformation. Chemie Ingenieur Technik. 91. (12), 1822-1826 [Abstract]
[doi]
Paul, M.; Strassl, F.; Hoffmann, A.; Hoffmann, M.; Schlüter, M.; Herres-Pawlis, S. (2018). Reaction systems for bubbly flows. European Journal of Inorganic Chemistry. 2018. (20-21), 2101-2124 [Abstract]
[doi][www]
Perçin, Z.; Kursula, L.; Löfgren, E.; Byström, E.; Kexel, F.; Bubenheim, P.; Schlüter, M.; Liese, A. (2024). Intensification of a Biocatalytic Oxidation under Fine Bubble Aeration in a Rotating Bed Reactor. Biochemical Engineering Journal. [Abstract]
[doi]
Pesch S.; Schulz, S.; Aboud, N.; Schlüter, M. (2021). Experimental Investigation of Pure and Gas-Saturated Crude Oil Viscosity and Density from 268 to 308 K and Up to 23 MPa. Journal of Chemical & Engineering Data. 66. (6), 2355–2365 [Abstract]
[doi]
Pesch, S.; Jaeger, P.; Jaggi, A.; Malone, K.; Hoffmann, M.; Krause, D. (2018). Rise Velocity of Live-Oil Droplets in Deep-Sea Oil Spills. Environmental Engineering Science. 35. (4), 289-299 [Abstract]
[doi][www]
Rajabi, N.; Hoffmann, M.; Bahnemann, J.; Zeng, A.-P.; Schlüter, M.; Müller, J. (2012). A Chaotic Advection Enhanced Microfluidic Split-and-Recombine Mixer for the Preparation of Chemical and Biological Probes. Journal of chemical engineering of Japan. 45. (9), 703-707 [Abstract]
[doi][www]
Rautenbach, R; Hofmann, S; Buntkiel, L; Schäfer, J; Reinecke, S F; Hoffmann, M; Hampel, U; Schlüter, M (2024). Dynamics of Lagrangian Sensor Particles: The Effect of Non-Homogeneous Mass Distribution. Processes. 12. (8), [Abstract]
[doi][www]
Rollbusch, P.; Bothe, M.; Becker, M.; Ludwig, M.; Grünewald, M.; Schlüter, M.; Franke, R. (2015). Bubble columns operated under industrially relevant conditions – Current understanding of design parameters. Chemical Engineering Science. 126. 660-678 [Abstract]
[doi][www]
Rosseburg, A.; Fitschen, J.; Wutz, J.; Wucherpfennig, T.; Schlüter, M. (2018). Hydrodynamic inhomogeneities in large scale stirred tanks – Influence on mixing time. Chemical Engineering Science. 188. 208-220 [Abstract]
[doi][www]
Rüttinger, S.; Hoffmann, M.; Schlüter, M. (2019). How do vortex structures influence boundary layer dynamics in gas-liquid systems?. Chemical Engineering & Technology. 42. (7), 1421-1426 [Abstract]
[doi][www]
Rüttinger, S.; Hoffmann, M.; Schlüter, M. (2018). Experimental analysis of a bubble wake influenced by a vortex street. special issue: "Flow and Heat or Mass Transfer in the Chemical Process Industry. 3. (1), 8 [Abstract]
[doi][www]
Rüttinger, S.; Spille, C.; Hoffmann, M.; Schlüter, M. (2018). Laser-induced Fluorescence in Multiphase Systems. ChemBioEng Reviews. 4. (4), 1-18 [Abstract]
[doi][www]
Sa’adiyah, D. S.; Matsuo, Y.; Schlüter, M.; Kurimoto, R.; Hayashi, K.; Tomiyama, A. (2021). Effects of chemical absorption on mass transfer from single carbon dioxide bubbles in aqueous sodium hydroxide solution in a vertical pipe. Chemical Engineering Science (accepted).
Schlüter, M. (2011). Lokale Messverfahren für Mehrphasenströmungen. Chemie Ingenieur Technik. 83. (7), 1084-1095 [Abstract]
[doi][www]
Schlüter, M.; Billet, A.-M.; Herres-Pawlis, S. (2018). Reactive Bubbly Flows. Chemical Engineering & Technology. 40. (8), 1384 [Abstract]
[doi][www]
Schlüter, M.; Herres-Pawlis, S.; Nieken, U.; Tuttlies, U.; Bothe, D. (2021). Small-Scale Phenomena in Reactive Bubbly Flows: Experiments, Numerical Modeling, and Applications. Annual Review of Chemical and Biomolecular Engineering. 12. 625-643 [Abstract]
[doi]
Schlüter, M.; Hoffmann, M.; Räbiger, N. (2004). Theoretische und experimentelle Untersuchung der Mischvorgänge in T-förmigen Mikroreaktoren – Teil 2: Experimentelle Untersuchung des Strömungsmischen. Chemie Ingenieur Technik. 76. (11), 1682-1688 [doi][www]
Schlüter, M.; Scheid, S.; John, S.; Räbiger, N. (2005). Influence of local effects in three phase flows on power input in Jet-Loop Reactors. Power Technology. 151. (1-3), 68-76
Schwarz, S.; Frey, T.; Hoffmann, M.; Grünewald, M.; Schlüter, M. (2023). CFD-Based Compartment Modeling of Continuous Polymer Reactors in Milli-Structured Apparatuses by Use of the Mean Age Theory. Industrial & Engineering Chemistry Research. [Abstract]
[doi]
Sellin, D; Hiessl, R.; Bothe, M.; Timmermann, J.; Becker, M.; Schlüter, M.; Liese, A. (2017). Simultaneous local determination of mass transfer and residence time distribuations in organic multiphase systems. Chemical Engineering Journal. 321. 635-641 [Abstract]
[doi][www]
Shokri, N.; Stevens, B.; Madani, K.; Grabe, J.; Schlüter, M.; Smirnova, I. (2022). Climate Informed Engineering: An Essential Pillar of Industry 4.0 Transformation. ACS Engineering Au. [Abstract]
[doi][www]
Spille, C., Tholan V.P., Straiton, B., Johannsen, M., Hoffmann, M., Marashdeh, Q., Schlüter, M.
(2021). Electrical Capacitance Volume Tomography (ECVT) for Characterization of Additively Manufactured Lattice Structures (AMLS) in Gas-Liquid Systems. Fluids. 6. (9), 321 [Abstract]
[doi]
Spille, C.; Hu, X.; Maiwald, M.I.; Herzog, D.; Hoffmann, M.; Emmelmann, C.; Smirnova, I.; Schlüter, M. (2020). SMART Reactors: Intelligente additiv gefertigte strukturierte Einbauten zur Optimierung von Gas/Flüssig-Reaktionen. Chemie Ingenieur Technik. 92. (9), 1328 [Abstract]
[doi]
Spille, C.; Lyberis, A.; Maiwald, M.I.; Herzog, D.; Hoffmann, M.; Emmelmann, C; Schlüter, M. (2020). SMART-Reactors: Tailoring Gas Holdup Distribution by Additively Manufactured Lattice Structures. Chemical Engineering & Technology. 43. (10), 2053-2061 [Abstract]
[doi]
Stahlberg, N.; Mosler, S.; Schlüter, M. (2016). Writing, Calculating and Peer Feedback in a Mathematically-oriented Course for Process Engineers: Raising Motivation and Initiating Processes of Thinking and Learning. Journal of Academic Writing. 6. (1), 84-97 [Abstract]
[doi][www]
Sun, M., Ülker, Z., Chen, Z., Deeptanshu, S., Johannsen, M., Erkey, C., Gurikov, P. (2021). Development and Validation of Retention Models in Supercritical Fluid Chromatography for Impregnation Process Design. Applied Sciences. 11. (15), 7106 [Abstract]
[doi]
Szeliga,N.; Elgot, L.H.v.; Bezecny, D.; Richter, S.; Hoffmann, M.; Schlüter, M.: (2019). Large Scale Experiments on the Formation of Surface Vortices with and without Vortex Suppression. Chemie Ingenieur Technik. 91. 1802-1811 [doi]
Thomas, B.; Ohde, D.; Matthes, S.; Engelmann, C.; Bubenheim, P.; Terasaka, K.; Schlüter, M.; Liese, A. (2020). Comparative investigation of fine bubble and macrobubble aeration on gas utility and biotransformation productivity. Biotechnology and Bioengineering. [Abstract]
[doi]
Timmermann, J.; Hoffmann, M.; Schlüter, M. (2016). Influence of bubble bouncing on mass transfer and chemical reaction. Chemical Engineering & Technology. 39. (10), 1955-1962 [Abstract]
[doi][www]
Urban, C.; Schlüter, M. (2015). Investigations on the stochastic nature of condensation induced water hammer. International Journal of Multiphase Flow. 67. 1-9 [Abstract]
[doi][www]
Weiland, C.; Steuwe, E.; Fitschen, J.; Hoffmann, M.; Schlüter, M.; Padberg-Gehle, K.; von Kameke, A. (2023). Computational study of three-dimensional Lagrangian transport and mixing in a stirred tank reactor. Chemical Engineering Journal Advances. 14. [Abstract]
[doi]
Weiland, C.; von Kameke, A.; Schlüter, M. (2024). Trajectory-based breakup modelling for dense bubbly flows. Chemical Engineering Journal. 499. 155726 [Abstract]
[doi]
Weiland, C; Salli, M.; Fitschen, J.; Hoffmann, M.; Schlüter, M. (2023). Introduction of novel characteristic time quantities to describe chemical reactors. Chemical Engineering Journal Advances. 16. [Abstract]
[doi]
Weiner, A.; Timmermann, J.; Pesci, C.; Grewe, J.; Hoffmann, M.; Schlüter, M.; Bothe, D. (2019). Experimental and numerical investigation of reactive species transport around a small rising bubble. Chemical Engineering Science. 1. (100007), [Abstract]
[doi][www]
Wiedemann, M.; John, S.; Schlüter, M.; Kutschera, D.; Riener, F.-X.; Döring, W.; Eisenlauer, J. (2010). Einsatz des Strahlzonen-Schlaufenreaktors bei stofftransportlimitierten, mehrphasigen chemischen Reaktionen. Chemie Ingenieur Technik. 82. (3), 243-250 [Abstract]
[doi][www]
Wiedemann, M.; Räbiger, N.; Schlüter, M.; Eisenlauer, J.; Riener, F.-X.; Kutschera, D.; Neumann, S.; Döring, W. (2010). Scale-down des Strahlzonen-Schlaufenreaktors: Entwicklung eines Screening-Tools für transportlimitierte chemische Reaktionen. Chemie Ingenieur Technik. 83. (3), 349-357 [Abstract]
[doi][www]
Wiedemann, M.; Schlüter, M.; Räbiger, N. (2010). Investigation of the local specific energy dissipation rates in a jet-zone Loop Reactor for halogenation of ketones. The Canadian Journal of Chemical Engineering. 88. (3), 359-366 [Abstract]
[doi][www]
article
Bernemann, V.; Fitschen, J.; Leupold, M.; Scheibenbogen, K.-H.; Maly, M.; Hoffmann, M.; Wucherpfennig, T.; Schlüter, M. (2024). Characterization Data for the Establishment of Scale-Up and Process Transfer Strategies between Stainless Steel and Single-Use Bioreactors. Fluids. 9. (5), [Abstract]
[doi][www]