Courses in Stud.IP

current semester
zur Veranstaltung in Stud.IP Studip_icon
Machine Learning in High-Frequency Technology and Radar (VL)
Untertitel:
This course is part of the module: Machine Learning in Electrical Engineering and Information Technology
Semester:
SoSe 24
Veranstaltungstyp:
Vorlesung (Lehre)
Veranstaltungsnummer:
lv3007_s24
DozentIn:
Prof. Dr. Alexander Kölpin
Beschreibung:

Modern high-frequency systems benefit massively from machine learning methods. In applications where rule-based algorithms reach their limits, these data-driven approaches enable a significant increase in resolution and accuracy. This is exemplified by current research challenges, namely for the classification of targets in autonomous driving radar systems, radar-based gesture recognition for smart home applications and device control as well as in the field of medical technology for the contactless monitoring of human vital signs.

Leistungsnachweis:
m1785-2022 - Machine Learning in Electrical Engineering and Information Technology<ul><li>p1778-2022 - Machine Learning in Electrical Engineering and Information Technology: mündlich</li></ul>
ECTS-Kreditpunkte:
1
Weitere Informationen aus Stud.IP zu dieser Veranstaltung
Heimatinstitut: Institut für Hochfrequenztechnik (E-3)
In Stud.IP angemeldete Teilnehmer: 1
former semester
zur Veranstaltung in Stud.IP Studip_icon
Machine Learning in High-Frequency Technology and Radar (VL)
Untertitel:
This course is part of the module: Machine Learning in Electrical Engineering and Information Technology
Semester:
SoSe 24
Veranstaltungstyp:
Vorlesung (Lehre)
Veranstaltungsnummer:
lv3007_s24
DozentIn:
Prof. Dr. Alexander Kölpin
Beschreibung:

Modern high-frequency systems benefit massively from machine learning methods. In applications where rule-based algorithms reach their limits, these data-driven approaches enable a significant increase in resolution and accuracy. This is exemplified by current research challenges, namely for the classification of targets in autonomous driving radar systems, radar-based gesture recognition for smart home applications and device control as well as in the field of medical technology for the contactless monitoring of human vital signs.

Leistungsnachweis:
m1785-2022 - Machine Learning in Electrical Engineering and Information Technology<ul><li>p1778-2022 - Machine Learning in Electrical Engineering and Information Technology: mündlich</li></ul>
ECTS-Kreditpunkte:
1
Weitere Informationen aus Stud.IP zu dieser Veranstaltung
Heimatinstitut: Institut für Hochfrequenztechnik (E-3)
In Stud.IP angemeldete Teilnehmer: 1

Courses

For information on courses and modules, please refer to the current course catalogue and module manual of your degree programme.

Module / Course Period ECTS Credit Points
Module: Electrical Power Systems I: Introduction to Electrical Power Systems WiSe 6
Module: Electrical Power Systems II: Operation and Information Systems of Electrical Power Grids WiSe 6
Module: Electrical Power Systems III: Dynamics and Stability of Electrical Power Systems SuSe 6
Module: Electrical Engineering II: Alternating Current Networks and Basic Devices SuSe 6
Module: Electrical Engineering Project Laboratory SuSe 6
Module: Process Measurement Engineering SuSe 4
Module: Smart Grid Technologies WiSe, SuSe 6

Course: Seminar on Electromagnetic Compatibility and Electrical Power Systems

Further Information

WiSe, SuSe 2

SuSe: Summer Semester
WiSe: Winter Semester