Marwan Mostafa

M.Sc.
Research Assistant

Contact

Marwan Mostafa, M.Sc.
E-6 Elektrische Energietechnik
  • Elektrische Energietechnik
Office Hours
nach Vereinbarung/ by appointment
Harburger Schloßstraße 22a,
21079 Hamburg
Building HS22a, Room 2.015
Phone: +49 40 42878 4097
Logo

Research Project

iNeP
Integrated network planning for the electricity, gas and heat sectors

iNeP

Integrated network planning for the electricity, gas and heat sectors

Federal Ministry for Economic Affairs and Climate Action (BMWK); Duration: 2021 to 2026

Publications

TUHH Open Research (TORE)

2024

2023

2022

2021

Courses

Stud.IP
link to course in Stud.IP Studip_icon
Machine Learning Applications in Electric Power Systems (VL)
Subtitle:
This course is part of the module: Machine Learning in Electrical Engineering and Information Technology
Semester:
SoSe 24
Course type:
Lecture
Course number:
lv3008_s24
Lecturer:
Prof. Dr.-Ing. Christian Becker, Dr. Davood Babazadeh, Simon Stock, M.Sc.
Description:

This part of the course focuses on how to utilize ML methods to model and operate electric power systems. Electric power systems consist of generation units such as PV, loads or consumers and the grid that connects those actors and supports to transport energy. This part of the course helps to understand the data-driven modelling of generation units (e.g. PV & fuel cells), modelling of load behavior, and to formulate and solve a state estimation problem for distribution grids using neural networks.

This part of the course includes lectures to introduce the basics that are followed by practical examples and coding.

Performance accreditation:
m1785-2022 - Machine Learning in Electrical Engineering and Information Technology<ul><li>p1778-2022 - Machine Learning in Electrical Engineering and Information Technology: mündlich</li></ul>
ECTS credit points:
1
Stud.IP informationen about this course:
Home institute: E-6 Elektrische Energietechnik
Registered participants in Stud.IP: 3

Supervised Theses

ongoing
completed

2022

  • Barthelme, J. (2022). Technisch-ökonomische Systemmodellierung und -anlayse eines urbanen Quatiers hinsichtlich des Einsatz von Wasserstoff als primärer Energieträger.