Christoph Klie

M.Sc.
Research Assistant

Contact

Christoph Klie, M.Sc.
E-6 Elektrische Energietechnik
  • Elektrische Energietechnik
Office Hours
Jederzeit
Harburger Schloßstraße 36,
21079 Hamburg
Building HS36, Room C3 0.001
Phone: +49 40 42878 2239
E-mail:
Logo

Research Project

SuSy
Sustainable DC-Systems – DC-Power Systems on Ships

SuSy

Sustainable DC-Systems – DC-Power Systems on Ships

Federal Ministry for Economic Affairs and Climate Action (BMWK); Duration: 2021 to 2024

Publications

TUHH Open Research (TORE)

2023

2022

Courses

Stud.IP
link to course in Stud.IP Studip_icon
Software für Eingebettete Systeme
Subtitle:
Module: Software für Eingebettete Systeme
Semester:
SoSe 24
Course style:
Lecture + Lab
Course type:
Lecture
Course number:
lv1069_s24
Lecturer:
Prof. Dr. Bernd-Christian Renner, Peter Oppermann, Johannes Göpfert, Fabian Steinmetz
Description:
Embedded systems are present everywhere in our daily lives and are integral parts of modern engineering. They start with smart lightbulbs or electric door openers and continue with control units for automotive applications or industrial machines. Furthermore, safety-critical systems, such as airbags or ventilators, are controlled with an embedded system.

Course Objectives

In this course, the students learn to develop software for embedded systems. At first, the students learn the concepts of embedded systems, including hardware structures and software design. Afterwards, they are introduced to microcontrollers and their functionalities, such as input and output registers, timers, interrupts, and bus systems. At the end of this course, the students know how to develop, implement, and test software for embedded systems.

Prerequisites

Students taking this course must be familiar with the C programming language and its concepts, for example, pointers and procedural programming. Furthermore, basic knowledge of software design and electrical engineering is helpful for this course.

Lab

A lab accompanies the lecture, where the students learn to program a microcontroller and apply the lecture’s content. Using an ATmega32U4, the students develop a hardware-oriented and low-level software library to address digital input and output pins, read analog to digital (ADC) converters for analog sensors, use hardware timers and interrupts, and control an actuator. At the end of the lab, the students combine all functionalities and implement software for different applications.
Performance accreditation:
Written Exam
ECTS credit points:
6
Stud.IP informationen about this course:
Home institute: Institut für Autonome Cyber-Physische Systeme (E-24)
Registered participants in Stud.IP: 143
Postings: 4
Documents: 23

Supervised Theses

ongoing

2023

  • Erxleben, J. (2023). Entwicklung eines Algorithmus zur Identifikation und Klassifizierung relevanter Arbeitspunkte eines elektrischen Systems aus Momentanwert-Datensätzen.

completed

2023

  • Engemann, T. (2023). Entwicklung einer Methodik zur automatischen Identifizierung, Klassifizierung und Modellierung betriebsrelevanter Arbeitspunkte eines elektrischen Netzes aus Echtzeitmesswerten.

  • Herzberg, M. (2023). Entwicklung eines echtzeitfähigen Photovoltaiksimulators auf Basis historischer Strahlungsdaten für einen Power Hardware-in-the-Loop Aufbau mit einem PV-Wechselrichter.

  • Heunda, J.E.W. (2023). Entwicklung, Optimierung und Vergleich von Methoden zur Erzeugung passiver Ersatzschaltbilder aus Messwerten einer Impedanzspektroskopie.

2022

  • Becker, H. C. (2022). Entwicklung, Implementierung und Verifizierung einer Schnittstellensynchronisation für die Kopplung von in Echtzeit simulierten Anlagen und Komponenten an einen PHiL Laboraufbau.

  • Hinzke, M. (2022). Untersuchung der Stabilität eines Power Hardware-in-the-Loop Teststandes unter der Verwendung eines Synchrongenerators als Schnittstelle zwischen Simulation und Hardware.

  • Landenfeld, Jakob (2022). Implementierung und Validierung einer Methode zur Stabilisierung von Power Hardware-in-the-Loop Simulationen mittels einer online-Impedanzmessung auf einem FPGA.

  • Landenfeld, Jakob (2022). Bestimmung der Stabilitätskriterien eines DC Power Hardware-in-the-Loop Aufbaus zur Untersuchung von Rippelstrom in Gleichstromsystemen.

  • Müller, E. (2022). Evaluation of different modelling approaches for battery aging to predict capacity fade for optimization of battery operation.

  • von Krosigk, J. (2022). Analyse und Bewertung einer Einsatzoptimierung für erneuerbare Energieanlagen in Kombination mit Batteriespeichersystemen im Multi-Use Betrieb.

2021

  • Erxleben, J. (2021). Untersuchung der Performance eines Pools aus Erneuerbaren Energien für die Erbringung von frequenzstützenden Maßnahmen.

  • von Krosigk, J. (2021). Untersuchung eines neuartigen Ansatzes zur kurz- und mittelfristigen Vorhersage der Netzfrequenz unter der Verwendung künstlicher neuronaler Netze.