Béla Wiegel

M.Sc.
Wissenschaftlicher Mitarbeiter

Kontakt

Béla Wiegel, M. Sc.
E-6 Elektrische Energietechnik
  • Elektrische Energietechnik
Sprechzeiten
Auf Anfrage
Harburger Schloßstraße 22a,
21079 Hamburg
Gebäude HS22a, Raum 2.003
Tel: +49 40 42878 2240
Logo

Forschungsprojekte

EffiziEntEE
Effiziente Einbindung hoher Anteile Erneuerbarer Energien in technisch-wirtschaftlich integrierte Energiesysteme

EffiziEntEE

Effiziente Einbindung hoher Anteile Erneuerbarer Energien in technisch-wirtschaftlich integrierte Energiesysteme

Bundesministerium für Wirtschaft und Klimaschutz (BMWK); Laufzeit: 2022 bis 2025

CyEntEE
I³-Lab Cyber Physical Energy Systems – Sustainability, Resilience and Economics

I³-Lab

CyEntEE

Cyber Physical Energy Systems – Sustainability, Resilience and Economics

Technische Universität Hamburg (TUHH); Laufzeit: 2020 bis 2023

Publikationen

TUHH Open Research (TORE)

2024

2023

2022

2021

Lehrveranstaltungen

Stud.IP
zur Veranstaltung in Stud.IP Studip_icon
Machine Learning Applications in Electric Power Systems (VL)
Untertitel:
This course is part of the module: Machine Learning in Electrical Engineering and Information Technology
Semester:
SoSe 24
Veranstaltungstyp:
Vorlesung (Lehre)
Veranstaltungsnummer:
lv3008_s24
DozentIn:
Prof. Dr.-Ing. Christian Becker, Dr. Davood Babazadeh, Simon Stock, M.Sc.
Beschreibung:

This part of the course focuses on how to utilize ML methods to model and operate electric power systems. Electric power systems consist of generation units such as PV, loads or consumers and the grid that connects those actors and supports to transport energy. This part of the course helps to understand the data-driven modelling of generation units (e.g. PV & fuel cells), modelling of load behavior, and to formulate and solve a state estimation problem for distribution grids using neural networks.

This part of the course includes lectures to introduce the basics that are followed by practical examples and coding.

Leistungsnachweis:
m1785-2022 - Machine Learning in Electrical Engineering and Information Technology<ul><li>p1778-2022 - Machine Learning in Electrical Engineering and Information Technology: mündlich</li></ul>
ECTS-Kreditpunkte:
1
Weitere Informationen aus Stud.IP zu dieser Veranstaltung
Heimatinstitut: Elektrische Energietechnik (E-6)
In Stud.IP angemeldete Teilnehmer: 3

Betreute Abschlussarbeiten

laufende
beendete

2024

  • Rücker, J. (2024). Optimal Scheduling of Flexible Components in Residential Neighborhoods Using Detailed Linear Programming.

2023

  • Nitz, A. (2023). Die Wärmepumpen im virtuellen Kraftwerk - Untersuchung von Wärmepumpen unter Berücksichtigung unterschiedlicher Funktionsprotokolle innerhalb eines virtuellen Kraftwerks.

2022

  • Kaya, E. (2022). Simulation des Lebenszyklus‘ einer Lithium Ion Zelle in den stationären EP and instationären EV Anwendungsfällen.

  • Pauelsen, F.-T. (2022). Implementierung eines Maximum-Power-Point-Tracker für Photovoltaikanlagen in Modelica.

  • Rücker, J. (2022). Dynamische Untersuchung des Verhaltens elektrischer Komponenten auf Quartiersebene hinsichtlich der Spannungshaltung.

  • Rüffert, J. (2022). Charakterisierung von Zellen in Verteilnetzen anhand von Bewertungskriterien und die Auswirkungen von punktuell und zeitlich begrenzt auftretenden Lasten.

2021

  • Helmrich von Elgott, L. (2021). Optimierter Einsatz dezentraler Flexibilität zur Betriebsführung intelligenter sektorgekoppelter Verteilnetze.

  • Zwinzscher, S. (2021). Entwicklung einer Methodik zur dynamischen Berechnung der Flexibilität eines auf Power-to-Heat basierenden Nahwärmenetzes.