Marwan Mostafa

M.Sc.
Wissenschaftlicher Mitarbeiter

Kontakt

Marwan Mostafa, M.Sc.
E-6 Elektrische Energietechnik
  • Elektrische Energietechnik
Sprechzeiten
nach Vereinbarung/ by appointment
Harburger Schloßstraße 22a,
21079 Hamburg
Gebäude HS22a, Raum 2.015
Tel: +49 40 42878 4097
Logo

Forschungsprojekt

iNeP
Integrierte Netzplanung der Sektoren Strom, Gas und Wärme

iNeP

Integrierte Netzplanung der Sektoren Strom, Gas und Wärme

Bundesministerium für Wirtschaft und Klimaschutz (BMWK); Laufzeit: 2021 bis 2026

Publikationen

TUHH Open Research (TORE)

2024

2023

2022

2021

Lehrveranstaltungen

Stud.IP
zur Veranstaltung in Stud.IP Studip_icon
Machine Learning in Electrical Engineering and Information Technology
Semester:
SoSe 24
Veranstaltungstyp:
Vorlesung (Lehre)
Veranstaltungsnummer:
lv3004_s24
DozentIn:
Prof. Dr. sc. techn. Christian Schuster, Prof. Dr.-Ing. Christian Becker, Prof. Dr. Alexander Kölpin, Gerhard Bauch, Dr. Maximilian Stark, Dr. Davood Babazadeh, Dr. Cheng Yang, PD Dr.-Ing. habil. Rainer Grünheid, Simon Stock, M.Sc.
Beschreibung:
This master course, a collaborative effort between the Institute of Communications, the Institute for High-Frequency Engineering, the Institute for Power Systems, and the Institute for Theoretical Electrical Engineering, is designed to unveil the synergies between machine learning and our respective fields of expertise. In an age defined by rapid technological advancement, machine learning stands as a catalyst for innovation, offering transformative possibilities across diverse sectors. From optimizing communication systems to enhancing power grid efficiency, and from refining signal processing techniques to enabling autonomous systems, the integration of machine learning techniques holds immense promise for addressing contemporary challenges. Throughout this course, we will delve into the theoretical underpinnings, practical methodologies, and tangible applications of neural networks and machine learning algorithms. By delving into algorithmic design, data analysis, and optimization techniques, we aim to equip you with the skills and insights needed to navigate the complexities of modern engineering landscapes.
Leistungsnachweis:
m1785-2022 - Machine Learning in Electrical Engineering and Information Technology<ul><li>p1778-2022 - Machine Learning in Electrical Engineering and Information Technology: mündlich</li></ul>
ECTS-Kreditpunkte:
6
Weitere Informationen aus Stud.IP zu dieser Veranstaltung
Heimatinstitut: E-8 Nachrichtentechnik
In Stud.IP angemeldete Teilnehmer: 101
Anzahl der Postings im Stud.IP-Forum: 4
Anzahl der Dokumente im Stud.IP-Downloadbereich: 25

Betreute Abschlussarbeiten

laufende
beendete

2022

  • Barthelme, J. (2022). Technisch-ökonomische Systemmodellierung und -anlayse eines urbanen Quatiers hinsichtlich des Einsatz von Wasserstoff als primärer Energieträger.