Christina Eckel

M.Sc.
Wissenschaftliche Mitarbeiterin

Kontakt

Christina Eckel, M. Sc.
E-6 Elektrische Energietechnik
  • Elektrische Energietechnik
Sprechzeiten
nach Vereinbarung
Harburger Schloßstraße 36,
21079 Hamburg
Gebäude HS36, Raum C3 0.006
Tel: +49 40 42878 2377
Logo

Forschungsprojekt

Stabilität und Netzregelung in Übertragungsnetzen mit leistungselektronisch gekoppelten Betriebsmitteln

Stabilität und Netzregelung in Übertragungsnetzen mit leistungselektronisch gekoppelten Betriebsmitteln

Technische Universität Hamburg (TUHH); Laufzeit: 2021 bis 2025

Publikationen

TUHH Open Research (TORE)

2024

2023

2022

Lehrveranstaltungen

Stud.IP
zur Veranstaltung in Stud.IP Studip_icon
Maschinelles Lernen I (VL)
Untertitel:
Diese Lehrveranstaltung ist Teil des Moduls: Maschinelles Lernen, Maschinelles Lernen I
Semester:
SoSe 24
Veranstaltungstyp:
Vorlesung (Lehre)
Veranstaltungsnummer:
lv2432_s24
DozentIn:
Nihat Ay, Dr. Manfred Eppe
Beschreibung:
  • Geschichte der Neurowissenschaften und des maschinellen Lernens (insbesondere des tiefen Lernens) 
  • McCulloch-Pitts-Neuronen und binäre neuronale Netze
  • Boolesche Funktionen und Schellwert-Funktionen 
  • Universalität von neuronalen McCulloch-Pitts-Netzwerken
  • Lernen und das Perzeptron-Konvergenz-Theorem
  • Support-Vektor-Maschinen
  • Harmonische Analyse von Booleschen Funktionen
  • Kontinuierliche künstliche neuronale Netze 
  • Kolmogorovsches Superpositions-Theorem
  • Universelle Approximation mit kontinuierlichen neuronalen Netzen
  • Approximationsfehler und die Gradienten-Abstiegs-Methode: die allgemeine Idee
  • Die stochastische Gradienten-Abstiegs-Methode (Robbins-Monro- und Kiefer-Wolfowitz-Fälle)
  • Mehrschichtige Netzwerke und der Backpropagation-Algorithmus
  • Statistische Lerntheorie
Leistungsnachweis:
m1595 - Maschinelles Lernen<ul><li>p1543 - Maschinelles Lernen: Klausur schriftlich</li></ul><br>m1595-2022 - Maschinelles Lernen I<ul><li>p1543-2022 - Maschinelles Lernen I: Klausur schriftlich</li><li>vl424-2022 - Freiwillige Studienleistung Maschinelles Lernen I - Übungsaufgaben: Übungsaufgaben</li></ul>
ECTS-Kreditpunkte:
3
Weitere Informationen aus Stud.IP zu dieser Veranstaltung
Heimatinstitut: Institut für Data Science Foundations (E-21)
In Stud.IP angemeldete Teilnehmer: 124
Anzahl der Postings im Stud.IP-Forum: 10
Anzahl der Dokumente im Stud.IP-Downloadbereich: 17

Betreute Abschlussarbeiten

laufende

2024

  • Bahe, B. (2024). Nichtlineare Stabilitätsuntersuchungen in einem leistungselektronisch dominierten elektrischen Energiesystem.

  • Boehm, E. (2024). Einfluss des Netzäquivalents auf die Stabilität eines Netzes mit netzbildenden und netzfolgenden Umrichtern.

beendete

2024

  • Helmich, L. M. (2024). Entwicklung und Simulation eines Effektivwertmodells für STATCOM-Anlagen mit neuartigen Regelstrategien für Pendeldämpfungen in PowerFactory.

  • Rüter, C. (2024). Einfluss der Netzstärke auf die Kleinsignalstabilität netzbildender Umrichter mit virtueller Oszillator-Regelung.

  • Schultheiß, J. (2024). Impedanzbasierte Stabilitätsanalyse zur Bewertung der Stabilitätsgrenzen von DC- und AC-Netzen.

2023

  • Chouiter, B. (2023). Dynamic Phasor Modelling and Comparison to Classical EMT Models.

  • Helmich, L. M. (2023). Entwicklung und Simulation einer Regelstrategie für die Pendeldämpfung durch STATCOM-Geräte.

  • Kamma, J. (2023). Umrichtermodellierung zur Repräsentation von Interaktionen im Sinne der Converter-Driven Stability.

  • Mißfeldt, C. (2023). Einfluss von Zeitverzögerungen auf die Converter-Driven Stability.

  • Rosenau, Y. (2023). Einfluss netzbildender Umrichter-Regelungsstrukturen auf die "Converter-Driven Stability".

2022

  • Kumar, M. (2022). Modellierung und Vergleich des Frequenzverhaltens dezentraler Anlagen mit netzbildenden Eigenschaften oder beigestellter Schwungmasse.

  • Lim, I. (2022). Modelling and Integration of a Hydrogen Storage Power Plant in the 10-Machine New-England Power System.

  • Rieckborn, N. (2022). Modellierung des Umwandlungsprozesses eines Wasserstoffspeicherkraftwerks.