Christina Eckel

M.Sc.
Wissenschaftliche Mitarbeiterin

Kontakt

Christina Eckel, M. Sc.
E-6 Elektrische Energietechnik
  • Elektrische Energietechnik
Sprechzeiten
nach Vereinbarung
Harburger Schloßstraße 36,
21079 Hamburg
Gebäude HS36, Raum C3 0.006
Tel: +49 40 42878 2377
Logo

Forschungsprojekt

Stabilität und Netzregelung in Übertragungsnetzen mit leistungselektronisch gekoppelten Betriebsmitteln

Stabilität und Netzregelung in Übertragungsnetzen mit leistungselektronisch gekoppelten Betriebsmitteln

Technische Universität Hamburg (TUHH); Laufzeit: 2021 bis 2025

Publikationen

TUHH Open Research (TORE)

2024

2023

2022

Lehrveranstaltungen

Stud.IP
zur Veranstaltung in Stud.IP Studip_icon
Software für Eingebettete Systeme
Untertitel:
Module: Software für Eingebettete Systeme
Semester:
SoSe 24
Veranstaltungsart:
Lecture + Lab
Veranstaltungstyp:
Vorlesung (Lehre)
Veranstaltungsnummer:
lv1069_s24
DozentIn:
Prof. Dr. Bernd-Christian Renner, Peter Oppermann, Johannes Göpfert, Fabian Steinmetz
Beschreibung:
Embedded systems are present everywhere in our daily lives and are integral parts of modern engineering. They start with smart lightbulbs or electric door openers and continue with control units for automotive applications or industrial machines. Furthermore, safety-critical systems, such as airbags or ventilators, are controlled with an embedded system.

Course Objectives

In this course, the students learn to develop software for embedded systems. At first, the students learn the concepts of embedded systems, including hardware structures and software design. Afterwards, they are introduced to microcontrollers and their functionalities, such as input and output registers, timers, interrupts, and bus systems. At the end of this course, the students know how to develop, implement, and test software for embedded systems.

Prerequisites

Students taking this course must be familiar with the C programming language and its concepts, for example, pointers and procedural programming. Furthermore, basic knowledge of software design and electrical engineering is helpful for this course.

Lab

A lab accompanies the lecture, where the students learn to program a microcontroller and apply the lecture’s content. Using an ATmega32U4, the students develop a hardware-oriented and low-level software library to address digital input and output pins, read analog to digital (ADC) converters for analog sensors, use hardware timers and interrupts, and control an actuator. At the end of the lab, the students combine all functionalities and implement software for different applications.
Leistungsnachweis:
Written Exam
ECTS-Kreditpunkte:
6
Weitere Informationen aus Stud.IP zu dieser Veranstaltung
Heimatinstitut: Institut für Autonome Cyber-Physische Systeme (E-24)
In Stud.IP angemeldete Teilnehmer: 143
Anzahl der Postings im Stud.IP-Forum: 4
Anzahl der Dokumente im Stud.IP-Downloadbereich: 23

Betreute Abschlussarbeiten

laufende

2024

  • Bahe, B. (2024). Nichtlineare Stabilitätsuntersuchungen in einem leistungselektronisch dominierten elektrischen Energiesystem.

  • Boehm, E. (2024). Einfluss des Netzäquivalents auf die Stabilität eines Netzes mit netzbildenden und netzfolgenden Umrichtern.

beendete

2024

  • Helmich, L. M. (2024). Entwicklung und Simulation eines Effektivwertmodells für STATCOM-Anlagen mit neuartigen Regelstrategien für Pendeldämpfungen in PowerFactory.

  • Rüter, C. (2024). Einfluss der Netzstärke auf die Kleinsignalstabilität netzbildender Umrichter mit virtueller Oszillator-Regelung.

  • Schultheiß, J. (2024). Impedanzbasierte Stabilitätsanalyse zur Bewertung der Stabilitätsgrenzen von DC- und AC-Netzen.

2023

  • Chouiter, B. (2023). Dynamic Phasor Modelling and Comparison to Classical EMT Models.

  • Helmich, L. M. (2023). Entwicklung und Simulation einer Regelstrategie für die Pendeldämpfung durch STATCOM-Geräte.

  • Kamma, J. (2023). Umrichtermodellierung zur Repräsentation von Interaktionen im Sinne der Converter-Driven Stability.

  • Mißfeldt, C. (2023). Einfluss von Zeitverzögerungen auf die Converter-Driven Stability.

  • Rosenau, Y. (2023). Einfluss netzbildender Umrichter-Regelungsstrukturen auf die "Converter-Driven Stability".

2022

  • Kumar, M. (2022). Modellierung und Vergleich des Frequenzverhaltens dezentraler Anlagen mit netzbildenden Eigenschaften oder beigestellter Schwungmasse.

  • Lim, I. (2022). Modelling and Integration of a Hydrogen Storage Power Plant in the 10-Machine New-England Power System.

  • Rieckborn, N. (2022). Modellierung des Umwandlungsprozesses eines Wasserstoffspeicherkraftwerks.