Dr. Davood Babazadeh

Gastdozent

Kontakt

Dr. Davood Babazadeh
E-6 Elektrische Energietechnik
  • Elektrische Energietechnik
Harburger Schloßstraße 36,
21079 Hamburg
Gebäude HS36, Raum C3 1.013
Tel: +49 40 42878
Logo

Publikationen

TUHH Open Research (TORE)

2024

2023

2022

2021

2020

2019

2018

2017

2016

2015

2014

2013

2009

Lehrveranstaltungen

Stud.IP
zur Veranstaltung in Stud.IP Studip_icon
Machine Learning in Electrical Engineering and Information Technology
Semester:
SoSe 24
Veranstaltungstyp:
Vorlesung (Lehre)
Veranstaltungsnummer:
lv3004_s24
DozentIn:
Prof. Dr. sc. techn. Christian Schuster, Prof. Dr.-Ing. Christian Becker, Prof. Dr. Alexander Kölpin, Gerhard Bauch, Dr. Maximilian Stark, Dr. Davood Babazadeh, Dr. Cheng Yang, PD Dr.-Ing. habil. Rainer Grünheid, Simon Stock, M.Sc.
Beschreibung:
This master course, a collaborative effort between the Institute of Communications, the Institute for High-Frequency Engineering, the Institute for Power Systems, and the Institute for Theoretical Electrical Engineering, is designed to unveil the synergies between machine learning and our respective fields of expertise. In an age defined by rapid technological advancement, machine learning stands as a catalyst for innovation, offering transformative possibilities across diverse sectors. From optimizing communication systems to enhancing power grid efficiency, and from refining signal processing techniques to enabling autonomous systems, the integration of machine learning techniques holds immense promise for addressing contemporary challenges. Throughout this course, we will delve into the theoretical underpinnings, practical methodologies, and tangible applications of neural networks and machine learning algorithms. By delving into algorithmic design, data analysis, and optimization techniques, we aim to equip you with the skills and insights needed to navigate the complexities of modern engineering landscapes.
Leistungsnachweis:
m1785-2022 - Machine Learning in Electrical Engineering and Information Technology<ul><li>p1778-2022 - Machine Learning in Electrical Engineering and Information Technology: mündlich</li></ul>
ECTS-Kreditpunkte:
6
Weitere Informationen aus Stud.IP zu dieser Veranstaltung
Heimatinstitut: Institut für Nachrichtentechnik (E-8)
In Stud.IP angemeldete Teilnehmer: 104
Anzahl der Postings im Stud.IP-Forum: 3
Anzahl der Dokumente im Stud.IP-Downloadbereich: 22