Lehrveranstaltungen in Stud.IP

aktuelles Semester
zur Veranstaltung in Stud.IP Studip_icon
Machine Learning in Electrical Engineering and Information Technology
Semester:
SoSe 24
Veranstaltungstyp:
Vorlesung (Lehre)
Veranstaltungsnummer:
lv3004_s24
DozentIn:
Prof. Dr. sc. techn. Christian Schuster, Prof. Dr.-Ing. Christian Becker, Prof. Dr. Alexander Kölpin, Gerhard Bauch, Dr. Maximilian Stark, Dr. Davood Babazadeh, Dr. Cheng Yang, PD Dr.-Ing. habil. Rainer Grünheid, Simon Stock, M.Sc.
Beschreibung:
This master course, a collaborative effort between the Institute of Communications, the Institute for High-Frequency Engineering, the Institute for Power Systems, and the Institute for Theoretical Electrical Engineering, is designed to unveil the synergies between machine learning and our respective fields of expertise. In an age defined by rapid technological advancement, machine learning stands as a catalyst for innovation, offering transformative possibilities across diverse sectors. From optimizing communication systems to enhancing power grid efficiency, and from refining signal processing techniques to enabling autonomous systems, the integration of machine learning techniques holds immense promise for addressing contemporary challenges. Throughout this course, we will delve into the theoretical underpinnings, practical methodologies, and tangible applications of neural networks and machine learning algorithms. By delving into algorithmic design, data analysis, and optimization techniques, we aim to equip you with the skills and insights needed to navigate the complexities of modern engineering landscapes.
Leistungsnachweis:
m1785-2022 - Machine Learning in Electrical Engineering and Information Technology<ul><li>p1778-2022 - Machine Learning in Electrical Engineering and Information Technology: mündlich</li></ul>
ECTS-Kreditpunkte:
6
Weitere Informationen aus Stud.IP zu dieser Veranstaltung
Heimatinstitut: Institut für Nachrichtentechnik (E-8)
In Stud.IP angemeldete Teilnehmer: 97
Anzahl der Postings im Stud.IP-Forum: 4
Anzahl der Dokumente im Stud.IP-Downloadbereich: 25
voriges Semester
zur Veranstaltung in Stud.IP Studip_icon
Machine Learning in Electrical Engineering and Information Technology
Semester:
SoSe 24
Veranstaltungstyp:
Vorlesung (Lehre)
Veranstaltungsnummer:
lv3004_s24
DozentIn:
Prof. Dr. sc. techn. Christian Schuster, Prof. Dr.-Ing. Christian Becker, Prof. Dr. Alexander Kölpin, Gerhard Bauch, Dr. Maximilian Stark, Dr. Davood Babazadeh, Dr. Cheng Yang, PD Dr.-Ing. habil. Rainer Grünheid, Simon Stock, M.Sc.
Beschreibung:
This master course, a collaborative effort between the Institute of Communications, the Institute for High-Frequency Engineering, the Institute for Power Systems, and the Institute for Theoretical Electrical Engineering, is designed to unveil the synergies between machine learning and our respective fields of expertise. In an age defined by rapid technological advancement, machine learning stands as a catalyst for innovation, offering transformative possibilities across diverse sectors. From optimizing communication systems to enhancing power grid efficiency, and from refining signal processing techniques to enabling autonomous systems, the integration of machine learning techniques holds immense promise for addressing contemporary challenges. Throughout this course, we will delve into the theoretical underpinnings, practical methodologies, and tangible applications of neural networks and machine learning algorithms. By delving into algorithmic design, data analysis, and optimization techniques, we aim to equip you with the skills and insights needed to navigate the complexities of modern engineering landscapes.
Leistungsnachweis:
m1785-2022 - Machine Learning in Electrical Engineering and Information Technology<ul><li>p1778-2022 - Machine Learning in Electrical Engineering and Information Technology: mündlich</li></ul>
ECTS-Kreditpunkte:
6
Weitere Informationen aus Stud.IP zu dieser Veranstaltung
Heimatinstitut: Institut für Nachrichtentechnik (E-8)
In Stud.IP angemeldete Teilnehmer: 97
Anzahl der Postings im Stud.IP-Forum: 4
Anzahl der Dokumente im Stud.IP-Downloadbereich: 25

Lehrveranstaltungen

Informationen zu den Lehrveranstaltungen und Modulen entnehmen Sie bitte dem aktuellen Vorlesungsverzeichnis und dem Modulhandbuch Ihres Studienganges.

Modul / Lehrveranstaltung Zeitraum ECTS Leistungspunkte
Modul: Elektrische Energiesysteme I: Einführung in elektrische Energiesysteme WiSe 6
Modul: Elektrische Energiesysteme II: Betrieb und Informationssysteme elektrischer Energienetze WiSe 6
Modul: Elektrische Energiesysteme III: Dynamik und Stabilität elektrischer Energiesysteme SoSe 6
Modul: Elektrotechnik II: Wechselstromnetzwerke und grundlegende Bauelemente SoSe 6
Modul: Elektrotechnisches Projektpraktikum SoSe 6
Modul: Prozessmesstechnik SoSe 4
Modul: Smart-Grid-Technologien WiSe, SoSe 6

Lehrveranstaltung: Seminar zu Elektromagnetischer Verträglichkeit und Elektrischer Energiesystemtechnik

weitere Information

WiSe, SoSe 2

SoSe: Sommersemester
WiSe: Wintersemester