Integrated Biorefinery for the Fractionation of Plant Residues with High Pressure Processes and Application of Added Value Streams for the Production of Bio-based Products

Dr. C. Zetzl



As the petrol era is facing its end, new resources for base chemicals, polymers and energy production need to be explored. Therefore, the conversion of biomass to high value products such as fine chemicals and biofuels has recently attracted the interest of scientists from academia and industry. Established processes are mainly based on the utilization of starchy substrates (1st genereation biorefinery), which are in direct competition with the food producing agricultural industries, while (often) leaving the main constituent of biomass resources unused. Biomass consists mainly of cellulose, hemicellulose and lignin followed by proteins and lipids. The goal of the second generation biorefinery is to integrate all added value streams into one biorefinery concept using lignocellulosic plant residues from different industries. The fractionation of added value streams is exemplarily depicted for the model substrate wheat straw:



Our motivation is to isolate these compounds or compound mixtures with a process cascade, which exclusively utilizes CO2, water and enzymes and to convert these into platform chemicals like glucose, xylanes and furfural. Currently, the use of lignin, as the second most abundant biopolymer and the main natural source of phenols, is gaining more attention.

These materials can be introduced into a sustainable production of scale for almost all needs in life science, energy and polymer producing technologies. These processes are contained in the term “biorefinery”. In analogy to an oil refinery, the biorefinery uses renewable sources as a feedstock and turns them into different product streams. Nevertheless, in order for this biorefinery to be economically viable, all its product streams should find use and application, exactly like in the oil refinery. Sequential isolation and possible use of the single fractions can be summarized as follows:



Find out about 10 years of lignocellulose biorefinery research at TVT

Summer School:

The TUHH-Institute for Thermal Separation Processes is taking active part in teaching at the annual European Summer School in High Pressure Technology, which has been held since 20 years by Prof. Thomas Gamse from the TU Graz.

Undergraduate / Grammar School:

TUHH Insitute for Thermal Separation Processes offers workshops with regional schools for the education of 2 G Biorefinery topics, namely the production and purification of Bioethanol.







  • Lisa Marie Schmidt (Konzeptionierung und Bewertung von Bioraffinerien zur Ligningewinnung basierend auf einem thermisch-enzymatischen Aufschluss)
  • Dr. Robert Meyer (Ligninfunktionalisierung, Aerogele)
  • Dr. Krishan Gairola (2013): Proteinhaltige Biomasse "Prozessintegrierte Wertstoffgewinnung aus protein- und lignocellulosereichen Reststoffen", Verteidigung: 15.11.2013, ISBN: 978-3-8440-2542-2
  • Dr. Christian Kirsch (2016): Lignocellulose-Bioraffinerie, Enzyme unter Druck "Integrierte thermische und enzymatische Hydrolyse lignocellulosehaltiger Biomasse im Hochdruck-Festbett", Verteidigung: ISBN : 978-3-8439-2762-8
  • Dr. Lilia Zenker (2016): Lignin-Aerogele, "Added-value for the 2nd Generation biorefinery: Isolation of lignin and its conversion into nanoporous materials", Verteidigung 29.9.2016


Concluded Projects:

Projektname Titel Förderzeitraum
DBU 13147-23 Bioethanol: Integrierter Prozess zur Produktion von Bioethanol aus natürlichen Rohhstoffen 2006 - 2008
DFG Br 846 / 25-2 Untersuchungen zur vollständigen Extraktion von organischen Substanzen durch Wasser und überkritische Fluide 2005 - 2008
BMBF -BRA 05/024 Added value on oleous products from the Amazon region by means of the application of supercritical fluids 2006 - 2008
EU FP6-2002-Mobility1 Supergreenchem, Green Chemistry in Supercritical Fluids: Kinetics, Phase Behaviour and Scale Up 2004 - 2008
EU FP7-SME-2008-1 BrewPack : Multi Layer Biopolymer films demonstrating selective gas carrier and functional properties 2009 - 2011
DBU 13226-32 Wertschöpfung für die Bioethanolraffinerie der 2. Generation: Optimierung und Konversion von Glukanen und Xylanen

2009 - 2011

BMBF 0315559A Bioraffinerie 2021, Phase I 2009 - 2012
BMBF 031A233A Bioraffinerie 2021, Phase II 2013 - 2015
BMBF 031B0091A Bioraffinerie 2021, Phase III 2016 - 2017
FNR 22018312 Stoffliche Nutzung von Lignin: Nanoporöse Materialien 2014 - 2017
BMBF- 01 DG 15001 Sustainable Production of Levulinic Acid from Sugar Cane Bagasse (WTZ mit Südafrika) 2015 - 2017


Ongoing Projects:

Projektname Titel Förderzeitraum
BMBF 031B066A ELBE-NH : Effizienzsteigerung von Lignin-Bioraffinerien durch Ergänzende Nutzung von Hydrolysaten 2019 - 2021
AIF-ZIM ZF 4702601EB9 POLIGOM: Porous Lignous Organic Materials - Hochporöse Ligninmaterialien 2019 - 2022
BMWi FP IB MYSCALE: Aufskalieruing eines Produktionsprozesses für eine Nährstofflösung für Pilzmyzelien 2021 - 2022
BUKEA Neue Adsobentien für Sulfuryldifluorid Seit 2021
Georg Foster/AvH Stipendium Green processing of agro-food by-products, Olive residues, Date seeds and Coffee silverskins, for the recovery of highly valuable fractions: Polyphenols, Proteins and Lignocellulose 2020 - 2022


Materials, Services and Equipment:

  • Bio MP- Lignin
  • Bio MP (Engineering Consultation for High Pressure Biomass Treatment)
  • Hot water hydrolysis (3 L und 40 L)
  • Stirred reactors (2 x 220 L und 20 L)
  • Decanter (Flottweg Z 18)
  • Extruder (Leistritz, ZSE 27 Maxx)
  • Batch SFE- equipment (40 mL bis 40 L)
  • Download Tool Batch SFE (
  • Soxhlet- Extraction

 Extruder (Leistritz, ZSE 27 Maxx)Decanter (Flottweg Z 18)

Stirred reactors (2 x 220 L)Hot water hydrolysis (40 L)