MaLiTuP

Maschinelles Lernen in Theorie und Praxis

MaLiTuP ist ein vom BMBF gefördertes Projekt der Technischen Universität Hamburg und des Fraunhofer-Center für maritime Logistik und Dienstleistungen CML.
Ziel des Vorhabens ist die Entwicklung und dauerhafte Einrichtung einer Qualifizierungsmaßnahme unter dem Titel „Maschinelles Lernen in Theorie und Praxis“, um Master-Studierenden der Fachrichtung Logistik der TUHH ein dauerhaftes Angebot im Bereich des Maschinellen Lernens zu unterbreiten.

Besonders im Bereich der Logistik gewinnt die Digitalisierung immer mehr an Bedeutung, sodass ein stetig höher werdender Bedarf an ausgebildetem Personal im Bereich des Maschinellen Lernens entsteht. Zusätzlich zu einer Vorlesung (inkl. Tutorien und Übung) sollen innerhalb der Qualifizierungsmaßnahme Praxisprojekte angeboten werden, die es den Studierenden ermöglichen, das erlernte Wissen in konkreten und realitätsnahen Fallbeispielen aus der maritimen Welt anzuwenden.

Dabei liegt der methodische und inhaltliche Fokus auf dem Umgang mit statischen als auch inkrementell anwachsenden großen Datenmengen, deren Klassifizierung und Korrelation sowie der Handhabung von Datenunsicherheiten. Darüber hinaus wird ein weiterführendes Angebot angestrebt, welches sich speziell an Universitätsabsolventen mit Berufserfahrung auf dem Gebiet der Datenanalyse richtet. Daneben soll das Forschungsprojekt »MaLiTuP« den Projektpartnern eine Erweiterung der eigenen Kompetenzen in dem Bereich der Big-Data-Analysen und -Prognosen ermöglichen sowie eine Konferenzserie zum Austausch von Nachwuchswissenschaftlern und etablierten Wissenschaftlern dieses Fachs initiieren.

 

 

Beteiligte



Kooperationspartner

 

  • TRENZ AG
    Seit 1999 entwickelt das international tätige Softwareunternehmen individuelle Lösungen. Im Geschäftsfeld Seeschifffahrt stellt das Unternehmen Informationsdienste in Echtzeit für die maritime Branche bereit.
  • JAKOTA Cruise Systems GmbH / FleetMon
    Das Unternehmen arbeitet seit 2010 auf dem Gebiet der Echtzeitverfolgung von Schiffen und nutzt als Datengrundlage täglich 300 Mio. Positionsmeldungen sowie Wetterdaten für Analysen.
  • Deutscher Wetterdienst
    Die Seewetterzentrale des Deutschen Wetterdienstes nimmt Aufgaben zur Erhöhung der Sicherheit der Seeschifffahrt wahr. Dabei wer-den unter anderem meteorologische Vorhersagen mit Hilfe numerischer Vorhersagesysteme erstellt.