Dr.-Ing. Thomas Wucherpfennig

Boehringer Ingelheim Pharma GmbH & Co. KG
Bioprocess Development Biologicals

Binger Strasse 173

55216 Ingelheim am Rhein

Phone +49 7351 54-144806

Mail Dr. Thomas Wucherpfennig


Thomas pursued the study of Biotechnology at the Technical University of Braunschweig, Germany, and Chemical Engineering at the University of Waterloo, Canada. He earned his PhD in Bioprocess Engineering from the Technical University of Braunschweig. Prior to joining Boehringer Ingelheim as a postdoctoral fellow in 2014, Thomas acquired valuable experience in the industrial biotech sector at Roche and Clariant. Since 2015, he has held various roles in cell culture process development at Boehringer Ingelheim and currently serves as a Senior Principal Scientist, spearheading late-stage process development. In addition, Thomas is a lecturer at FH Oberösterreich in Wels and TUHH – Hamburg University of Technology, His research focus is on bioprocess scale-up, bioreactor characterization, Process Analytical Technology (PAT), and cell culture process modeling.

Research Interests

  • Scale-up of bioprocesses
  • Bioreactor characterization
  • Computational Fluid Dynamics (CFD)
  • Process Analytical Technology (PAT)
  • Cell culture process modelling

Publications

[185019]
Title: Morphology engineering - Osmolality and its effect on Aspergillus niger morphology and productivity.
Written by: Wucherpfennig T., Hestler T., Krull R.
in: <em>Microb. Cell Fact.</em>. (2011).
Volume: <strong>10</strong>. Number: (58),
on pages:
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1186/1475-2859-10-58
URL:
ARXIVID:
PMID:

Note:

Abstract: Background: The filamentous fungus Aspergillus niger is a widely used strain in a broad range of industrial processes from food to pharmaceutical industry. One of the most intriguing and often uncontrollable characteristics of this filamentous organism is its complex morphology, ranging from dense spherical pellets to viscous mycelia depending on culture conditions. Optimal productivity correlates strongly with a specific morphological form, thus making high demands on process control. Results: In about 50 2L stirred tank cultivations the influence of osmolality on A. niger morphology and productivity was investigated. The specific productivity of fructofuranosidase producing strain A. niger SKAn 1015 could be increased notably from 0.5 to 9 U mg(-1) h(-1) around eighteen fold, by increasing the culture broth osmolality by addition of sodium chloride. The specific productivity of glucoamylase producing strain A. niger AB1.13, could be elevated using the same procedure. An optimal producing osmolality was shown to exist well over the standard osmolality at about 3.2 osmol kg(-1) depending on the strain. Fungal morphology of all cultivations was examined by microscope and characterized by digital image analysis. Particle shape parameters were combined to a dimensionless Morphology number, which enabled a comprehensive characterization of fungal morphology correlating closely with productivity. A novel method for determination of germination time in submerged cultivations by laser diffraction, introduced in this study, revealed a decelerated germination process with increasing osmolality. Conclusions: Through the introduction of the versatile Morphology number, this study provides the means for a desirable characterization of fungal morphology and demonstrates its relation to productivity. Furthermore, osmolality as a fairly new parameter in process engineering is introduced and found to affect fungal morphology and productivity. Osmolality might provide an auspicious and reliable approach to increase the productivity in industrial processes. Because of the predictable behavior fungal morphology showed in dependence of osmolality, a customization of morphology for process needs seems feasible.