PD Dr. Yan Jin

Eissendorfer Str. 38, bulding O, Room 3.019

Telephone +49 40 42878-4644

E-Mail: PD Dr. Jan Yin.


Research Interests


Turbulence modelling, simulation, and control

A turbulence model with high accuracy and low computational cost, see Jin (2019), has been developed through the DFG-Heisenberg program (299562371). The developed turbulence model has higher accuracy than classic LES and RANS models when the same mesh resolution is used. It is particularly suitable for simulating complex turbulent flows in industry, e.g., flows in turbomachinery (Jin 2020), see Fig. 1. We are also interested in the techniques of controlling turbulence and reducing the corresponding irreversible losses, see Jin & Herwig (2014) and Li, et al. (2021) as examples.

Convection in porous media

Porous media are an important material in nature and industry. Convection in porous media receives a lot of attentions in recent years with the emergence of some new engineering applications, e.g., long term storage of CO2 in deep saline aquifers, thermal energy storage systems using stones/bricks as storage materials, etc. Based on deep investigation of physics, we try to develop efficient and accurate macroscopic models for predicting losses and heat/mass transfer rate in porous media (Fig. 2), see details in Jin, et al. (2015; 2017), Uth, et al. (2016), Kranzien & Jin (2018), Rao, et al. (2020) and Gasow, et al. (2020) for the details of this research. This research is funded by the DFG (408356608). 

Flows in biological and physiological processes

Bio-fluid mechanics is an interdisciplinary study which is located at the interface of fluid mechanics and biology. This is a new and promising research field. We are studying the digestion process in human-stomach using a CFD method, see Li & Jin (2021). We have also investigated the “Magenstrasse” based on the numerical results (Fig. 3), see Li, et al. (2021). This research is funded by the Chinese Scholar Council (CSC). In another research topic, we are investigating the flow and particle transportation in a human’s respiratory system (Fig. 4).


 

Publications

Article

  • Zhang, H.-C.; Guo, Y.-Y.; Jin, Y.; Li, Y. (2012). An entropy production method to investigate the accuracy and stability of numerical simulation of one-dimensional heat transfer. Heat Trans. Res.. 43. (7), 669-693

  • Gasow S.; Kuznetsov, A.V.; Avila, M.; Y. Jin (2021). A macroscopic two-length-scale model for natural convection in porous media driven by a species-concentration gradient. Journal of Fluid Mechanics. 926. (A8), [Abstract] [doi]

  • Gasow, S.; Lin, Z.; Zhang, H.C.; Kuznetsov, A.V.; Avila, M.; Jin, Y. (2020). Effects of pore-scale on the macroscopic properties of natural convection in porous media. J. Fluid Mech. 891. (A25),

  • Geng, L.P.; Jin, Y.; Herwig, H. (2020). Can pulsation unsteadiness increase the convective heat transfer in a pipe flow? A systematic study. Numerical Heat Trans., Part B: Fundamentals. 78. (3), 160-174

  • Jin, Y; Herwig, H. (2010). Application of the extended similarity theory to a complex benchmark problem. Z. J. Appl. Math. Phys.. 61. 509-528

  • Jin, Y. (2017). Second-Law Analysis: A powerful tool for analyzing computational fluid dynamics (CFD) results. Entropy. 19. 679

  • Jin, Y.; B. Shaw, B. (2010). Computational modeling of n-heptane droplet combustion in air-diluent environments under reduced-gravity. Int. J. Heat Mass Trans.. 53. 5782-5791

  • Jin, Y.; B. Shaw, B. (2010). Numerical simulation of unsteady flows and shape oscillations in liquid droplets induced by deployment needle retraction. Micro. Sci. Tech.. 22. 17-26

  • Jin, Y.; Chen, X. D. (2008). Numerical study of the behavior of different size particles in an industrial spray dryer. Drying Tech.. 27. 371-381

  • Jin, Y.; Chen, X. D. (2009). A Three-dimensional numerical study of the gas/particle interactions in an industrial-scale spray dryer for milk powder production. Drying Tech.. 27. 1018-1027

  • Jin, Y.; Chen, X. D. (2010). A fundamental model of milk particle deposition incorporated in CFD simulations of an industrial milk spray dryers. Drying Tech.. 28. 960-971

  • Jin, Y.; Chen, X. D. (2011). Entropy production during the drying process of milk droplets in an industrial spray dryer. Int. J. Therm. Sci.. 50. 615-625

  • Jin, Y.; Du, J.; Li, Z.Y.; Zhang, H.W. (2017). Second-Law Analysis of irreversible losses in gas turbines. Entropy. 19. 470

  • Jin, Y.; Friedrich, R. (2007). Large eddy simulation of nozzle jet - external flow interaction. Notes on numerical fluid mechanics and multidisciplinary design. 57-81

  • Jin, Y.; Herwig, H. (2011). Efficient methods to account for variable property effects in numerical momentum and heat transfer solutions. Int. J. Heat Mass Trans.. 54. 2180-2187

  • Jin, Y.; Herwig, H. (2011). Variable property effects in momentum and heat transfer. Developments in Heat Transfer, InTech. 135-152

  • Jin, Y.; Herwig, H. (2012). Parameter extension method (PEM): an asymptotic extension of numerical and experimental flow and heat transfer results to further values of the inherent parameters. Heat Mass Trans.. 48. (5), 823-830

  • Jin, Y.; Herwig, H. (2013). From single obstacles to wall roughness: Some fundamental investigations based on DNS results for turbulent channel flow. Z. J. Appl. Math. Phys.. 64. 1337-1352

  • Jin, Y.; Herwig, H. (2014). Turbulent flow in channels with shark skin surfaces: Entropy generation and its physical significance. Int. J. Heat Mass Trans.. 70. 10-22

  • Jin, Y.; Herwig, H. (2015). Turbulent flow in rough wall channels: validation of RANS models. Comp. Fluids. 122. 34-46

  • Jin, Y.; Kuznetsov, A.V. (2017). Turbulence modeling for flows in wall bounded porous media: An analysis based on direct numerical simulations. Phys. Fluids. 29. (045102),

  • Jin, Y.; Schlüter, M. (2019). Direct numerical simulation of the interfacial mass transfer of a bubble in self-induced turbulent flows. Int. J. Heat Mass Trans.. 135. 1248-1259

  • Jin, Y.; Uth, M.F.; Herwig, H. (2015). Structure of a turbulent flow through plane channels with smooth and rough walls: An analysis based on high resolution DNS results. Comp. Fluids. 107. (31), 77-88

  • Jin, Y.; Uth, M.F.; Kuznetsov, A.V. ; Herwig, H. (2015). Numerical investigation of the possibility of macroscopic turbulence in porous media: a DNS study. J. Fluid Mech.. 766. 76-103

  • Jin, Y.; Yuan, X. (2002). aeroelastic analysis on an airfoil's flutter and flutter control technique of blowing. ACTA Energ. Solar. Sinica. 403-407

  • Jin, Y.; Yuan, X. (2002). Analysis of an airfoil’s flutter control technique of blowing by a fluid - structure coupling method. ACTA Aero. Sinica. 20. (3), 267-273

  • Jin, Y.; Yuan, X. (2002). Numerical study of unsteady viscous flow past oscillating airfoil. Wind Eng. 25. (3), 227-237

  • Jin, Y.; Yuan, X. (2003). Numerical analasis of 3D turbine blade’s torsional flutter by fluid-structure coupling method. J. Eng. Therm. 24. (3), 395-399

  • Jin, Y.; Yuan, X. (2003). Numerical simulation of fluid-induced vibration in seals by fluid-structure coupling method. J. Eng. Therm. 24. (3), 395-399

  • Jin, Y.; Yuan, X. (2004). Numerical simulation of fluid-induced vibration in seals by fluid-structure coupling method. J. Eng. Therm. 25. (1), 41-44

  • Jin, Y.; Yuan, X. (2004). Oscillatory blowing control numerical simulation of airfoil flutter by high-accuracy method. AIAA J. Aircraft. 41. (3), 610-615

  • Jin, Y.; Yuan, X.; Shin B. R. (2002). Aeroelastic analysis of an airfoil's stall flutter at large mean incidence angle. J. Eng. Thermo. 23. (5), 573-575

  • Kränzien, P.U.; Jin, Y. (2019). Natural convection in a two-dimensional cell filled with a porous medium: a direct numerical simulation study. Heat Trans. Eng.. 40. (5-6), 487-496

  • Li, C.Y.; Gasow, S.; Jin, Y.; Xiao, J.; Chen, X.D. (2021). Simulation based investigation of 2D soft-elastic reactors for better mixing performance. Engineering Applications of Computational Fluid Mechanics. 15. (1), 1229-1242 [Abstract] [doi]

  • Li, C.Y.; Jin, Y. (2021). A CFD model for investigating the dynamics of liquid gastric contents in human-stomach induced by gastric motility. J. Food Eng.. 296. (110461),

  • Li, C.Y.; Xiao, J.; Chen, X.D.; Jin, Y. (2021). Mixing and emptying of gastric contents in human-stomach: A numerical study. J. Biomech.. 118. (110293), [Abstract] [doi]

  • Li, Z.H.; Jin, Y.; Du, J.; Nie, C.; H.W. Zhang (2021). Physical Mechanisms Investigation of Sharkskin-Inspired Compressor Cascade Based on Large Eddy Simulations. J. Turbomach.. 143. (6), [Abstract] [doi]

  • Masquelet, M.; Menon, S.; Jin, Y.; Friedrich, R. (2009). Simulation of unsteady combustion in a LOX-GH2 fueled rocket engine. Aero. Sci. Tech. 18. (8), 466-474

  • Rao, F.R.; Kuznetsov, A.V.; Jin, Y. (2020). Numerical modeling of momentum dispersion in porous media based on the pore scale prevalence hypothesis. Trans. Porous Media. 133. 271-292

  • Uth, M.F.; Jin, Y.; Kuznetsov, A.V.; Herwig, H. (2016). A DNS study on the possibility of macroscopic turbulence in porous media: effects of different solid matrix geometries, solid boundaries, and two porosity scales. Phys. Fluids. 28. (065101),

  • Xu, G.; Zhang, H.; Jin, Y. (2018). Achieving arbitrarily polygonal thermal harvesting devices with homogeneous parameters through linear mapping function. Energy Conv. Manag.. 165. 253-262

  • Xu, G.; Zhang, H.; Wang, K.; Jin, Y.; Li, Y. (2018). Arbitrarily shaped thermal cloaks with non-uniform profiles in homogeneous media configurations. Optics Exp.. 26. (19), 25265-25279

  • Xu, G.; Zhang, H.; Zou, Q.; Jin, Y. (2017). Predicting and analyzing interaction of the thermal cloaking performance through response surface method. Int. J. Heat Mass Trans.. 109. 746-754

  • Xu, G.; Zhang, H.; Zou, Q.; Jin, Y.; Xie, M. (2017). Forecast of thermal harvesting performance under multi-parameter interaction with response surface methodology. Int. J. Heat Mass Trans.. 115. 682-693

  • Y. Jin (2019). Parameter extension simulation of turbulent flows. Phys. Fluids. 31. (125102),

Conference

  • Gasow, S.; Kuznetsov, A.V.; Schlüter, M.; Jin, Y. (2018). Turbulent forced convection in porous media: a direct numerical simulation study. IHTC16-22301, Proceedings of the 16th International Heat Transfer Conference, IHTC-16, Beijing, China.

  • Herwig, H.; Jin, Y. (2012). Parameter Extension Method (PEM): An asymptotic extension of numerical and experimental flow and heat transfer results to further values of the inherent parameters. Proceedings of the 3rd International Forum on Heat Transfer, Nagasaki, Japan.

  • Jin, Y. (2020). Parameter extension simulation of turbulent flows in a compressor cascade with a high Reynolds number. ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. [Abstract] [doi]

  • Jin, Y.; Herwig, H. (2010). Similarity theory including variable property effects: a complex benchmark problem. Proceedings of the International Heat Transfer Conference. Washington, IHTC14-22457.

  • Jin, Y.; Herwig, H. (2014). Effects of shark skin textures on entropy generation for turbulent flow and heat transfer problems. Proceedings of the International Heat Transfer Conference. Kyoto, IHTC15-8699.

  • Jin, Y.; Kränzien, P.U. (2016). Natural convection in a two-dimensional cell filled with porous medium: A DNS study. Proceedings of the 9th International Symposium on Heat Transfer, ISHT9-F0318, Beijing.

  • Jin, Y.; Kuznetsov, A.V. (2017). Using direct numerical simulations for investigating physics in porous media. Proceedings of the ASME 2017 Fluids Engineering Division Summer Meeting, FEDSM2017, At Waikoloa, Hawaii, USA.