Fig 1.: Turbulent flows in a compressor cascade

Fig. 2: Natural convection in porous media

Fig. 3: Flows in human-stomach

Fig. 4: O2 - concentration and distribution of aerosol particles in a respiratory system

Order by: Author Year Journal Bibtex Type of Publication

- Gasow S.; Kuznetsov, A.V.; Avila, M.; Y. Jin (2021). A macroscopic two-length-scale model for natural convection in porous media driven by a species-concentration gradient.
*Journal of Fluid Mechanics*.**926**. (A8), [Abstract] [doi] - Li, C.Y.; Gasow, S.; Jin, Y.; Xiao, J.; Chen, X.D. (2021). Simulation based investigation of 2D soft-elastic reactors for better mixing performance.
*Engineering Applications of Computational Fluid Mechanics*.**15**. (1), 1229-1242 [Abstract] [doi] - Li, C.Y.; Jin, Y. (2021). A CFD model for investigating the dynamics of liquid gastric contents in human-stomach induced by gastric motility.
*J. Food Eng.*.**296**. (110461), - Li, C.Y.; Xiao, J.; Chen, X.D.; Jin, Y. (2021). Mixing and emptying of gastric contents in human-stomach: A numerical study.
*J. Biomech.*.**118**. (110293), [Abstract] [doi] - Li, Z.H.; Jin, Y.; Du, J.; Nie, C.; H.W. Zhang (2021). Physical Mechanisms Investigation of Sharkskin-Inspired Compressor Cascade Based on Large Eddy Simulations.
*J. Turbomach.*.**143**. (6), [Abstract] [doi]

- Gasow, S.; Lin, Z.; Zhang, H.C.; Kuznetsov, A.V.; Avila, M.; Jin, Y. (2020). Effects of pore-scale on the macroscopic properties of natural convection in porous media.
*J. Fluid Mech*.**891**. (A25), - Geng, L.P.; Jin, Y.; Herwig, H. (2020). Can pulsation unsteadiness increase the convective heat transfer in a pipe flow? A systematic study.
*Numerical Heat Trans., Part B: Fundamentals*.**78**. (3), 160-174 - Jin, Y. (2020). Parameter extension simulation of turbulent flows in a compressor cascade with a high Reynolds number.
*ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition*. [Abstract] [doi] - Rao, F.R.; Kuznetsov, A.V.; Jin, Y. (2020). Numerical modeling of momentum dispersion in porous media based on the pore scale prevalence hypothesis.
*Trans. Porous Media*.**133**. 271-292

- Jin, Y.; Schlüter, M. (2019). Direct numerical simulation of the interfacial mass transfer of a bubble in self-induced turbulent flows.
*Int. J. Heat Mass Trans.*.**135**. 1248-1259 - Kränzien, P.U.; Jin, Y. (2019). Natural convection in a two-dimensional cell filled with a porous medium: a direct numerical simulation study.
*Heat Trans. Eng.*.**40**. (5-6), 487-496 - Y. Jin (2019). Parameter extension simulation of turbulent flows.
*Phys. Fluids*.**31**. (125102),

- Gasow, S.; Kuznetsov, A.V.; Schlüter, M.; Jin, Y. (2018). Turbulent forced convection in porous media: a direct numerical simulation study.
*IHTC16-22301, Proceedings of the 16th International Heat Transfer Conference, IHTC-16, Beijing, China*. - Xu, G.; Zhang, H.; Jin, Y. (2018). Achieving arbitrarily polygonal thermal harvesting devices with homogeneous parameters through linear mapping function.
*Energy Conv. Manag.*.**165**. 253-262 - Xu, G.; Zhang, H.; Wang, K.; Jin, Y.; Li, Y. (2018). Arbitrarily shaped thermal cloaks with non-uniform profiles in homogeneous media configurations.
*Optics Exp.*.**26**. (19), 25265-25279

- Jin, Y. (2017). Second-Law Analysis: A powerful tool for analyzing computational fluid dynamics (CFD) results.
*Entropy*.**19**. 679 - Jin, Y.; Du, J.; Li, Z.Y.; Zhang, H.W. (2017). Second-Law Analysis of irreversible losses in gas turbines.
*Entropy*.**19**. 470 - Jin, Y.; Kuznetsov, A.V. (2017). Turbulence modeling for flows in wall bounded porous media: An analysis based on direct numerical simulations.
*Phys. Fluids*.**29**. (045102), - Jin, Y.; Kuznetsov, A.V. (2017). Using direct numerical simulations for investigating physics in porous media.
*Proceedings of the ASME 2017 Fluids Engineering Division Summer Meeting, FEDSM2017, At Waikoloa, Hawaii, USA*. - Xu, G.; Zhang, H.; Zou, Q.; Jin, Y. (2017). Predicting and analyzing interaction of the thermal cloaking performance through response surface method.
*Int. J. Heat Mass Trans.*.**109**. 746-754 - Xu, G.; Zhang, H.; Zou, Q.; Jin, Y.; Xie, M. (2017). Forecast of thermal harvesting performance under multi-parameter interaction with response surface methodology.
*Int. J. Heat Mass Trans.*.**115**. 682-693

- Jin, Y.; Kränzien, P.U. (2016). Natural convection in a two-dimensional cell filled with porous medium: A DNS study.
*Proceedings of the 9th International Symposium on Heat Transfer, ISHT9-F0318, Beijing*. - Uth, M.F.; Jin, Y.; Kuznetsov, A.V.; Herwig, H. (2016). A DNS study on the possibility of macroscopic turbulence in porous media: effects of different solid matrix geometries, solid boundaries, and two porosity scales.
*Phys. Fluids*.**28**. (065101),

- Jin, Y.; Herwig, H. (2015). Turbulent flow in rough wall channels: validation of RANS models.
*Comp. Fluids*.**122**. 34-46 - Jin, Y.; Uth, M.F.; Herwig, H. (2015). Structure of a turbulent flow through plane channels with smooth and rough walls: An analysis based on high resolution DNS results.
*Comp. Fluids*.**107**. (31), 77-88 - Jin, Y.; Uth, M.F.; Kuznetsov, A.V. ; Herwig, H. (2015). Numerical investigation of the possibility of macroscopic turbulence in porous media: a DNS study.
*J. Fluid Mech.*.**766**. 76-103

- Jin, Y.; Herwig, H. (2014). Turbulent flow in channels with shark skin surfaces: Entropy generation and its physical significance.
*Int. J. Heat Mass Trans.*.**70**. 10-22 - Jin, Y.; Herwig, H. (2014). Effects of shark skin textures on entropy generation for turbulent flow and heat transfer problems.
*Proceedings of the International Heat Transfer Conference*.**Kyoto, IHTC15-8699**.

- Jin, Y.; Herwig, H. (2013). From single obstacles to wall roughness: Some fundamental investigations based on DNS results for turbulent channel flow.
*Z. J. Appl. Math. Phys.*.**64**. 1337-1352

- Zhang, H.-C.; Guo, Y.-Y.; Jin, Y.; Li, Y. (2012). An entropy production method to investigate the accuracy and stability of numerical simulation of one-dimensional heat transfer.
*Heat Trans. Res.*.**43**. (7), 669-693 - Herwig, H.; Jin, Y. (2012). Parameter Extension Method (PEM): An asymptotic extension of numerical and experimental flow and heat transfer results to further values of the inherent parameters.
*Proceedings of the 3rd International Forum on Heat Transfer, Nagasaki, Japan*. - Jin, Y.; Herwig, H. (2012). Parameter extension method (PEM): an asymptotic extension of numerical and experimental flow and heat transfer results to further values of the inherent parameters.
*Heat Mass Trans.*.**48**. (5), 823-830

- Jin, Y.; Chen, X. D. (2011). Entropy production during the drying process of milk droplets in an industrial spray dryer.
*Int. J. Therm. Sci.*.**50**. 615-625 - Jin, Y.; Herwig, H. (2011). Efficient methods to account for variable property effects in numerical momentum and heat transfer solutions.
*Int. J. Heat Mass Trans.*.**54**. 2180-2187 - Jin, Y.; Herwig, H. (2011). Variable property effects in momentum and heat transfer.
*Developments in Heat Transfer, InTech*. 135-152

- Jin, Y; Herwig, H. (2010). Application of the extended similarity theory to a complex benchmark problem.
*Z. J. Appl. Math. Phys.*.**61**. 509-528 - Jin, Y.; B. Shaw, B. (2010). Computational modeling of n-heptane droplet combustion in air-diluent environments under reduced-gravity.
*Int. J. Heat Mass Trans.*.**53**. 5782-5791 - Jin, Y.; B. Shaw, B. (2010). Numerical simulation of unsteady flows and shape oscillations in liquid droplets induced by deployment needle retraction.
*Micro. Sci. Tech.*.**22**. 17-26 - Jin, Y.; Chen, X. D. (2010). A fundamental model of milk particle deposition incorporated in CFD simulations of an industrial milk spray dryers.
*Drying Tech.*.**28**. 960-971 - Jin, Y.; Herwig, H. (2010). Similarity theory including variable property effects: a complex benchmark problem.
*Proceedings of the International Heat Transfer Conference*.**Washington, IHTC14-22457**.

- Jin, Y.; Chen, X. D. (2009). A Three-dimensional numerical study of the gas/particle interactions in an industrial-scale spray dryer for milk powder production.
*Drying Tech.*.**27**. 1018-1027 - Masquelet, M.; Menon, S.; Jin, Y.; Friedrich, R. (2009). Simulation of unsteady combustion in a LOX-GH2 fueled rocket engine.
*Aero. Sci. Tech*.**18**. (8), 466-474

- Jin, Y.; Chen, X. D. (2008). Numerical study of the behavior of different size particles in an industrial spray dryer.
*Drying Tech.*.**27**. 371-381

- Jin, Y.; Friedrich, R. (2007). Large eddy simulation of nozzle jet - external flow interaction.
*Notes on numerical fluid mechanics and multidisciplinary design*. 57-81

- Jin, Y.; Yuan, X. (2004). Numerical simulation of fluid-induced vibration in seals by fluid-structure coupling method.
*J. Eng. Therm*.**25**. (1), 41-44 - Jin, Y.; Yuan, X. (2004). Oscillatory blowing control numerical simulation of airfoil flutter by high-accuracy method.
*AIAA J. Aircraft*.**41**. (3), 610-615

- Jin, Y.; Yuan, X. (2003). Numerical analasis of 3D turbine blade’s torsional flutter by fluid-structure coupling method.
*J. Eng. Therm*.**24**. (3), 395-399 - Jin, Y.; Yuan, X. (2003). Numerical simulation of fluid-induced vibration in seals by fluid-structure coupling method.
*J. Eng. Therm*.**24**. (3), 395-399

- Jin, Y.; Yuan, X. (2002). aeroelastic analysis on an airfoil's flutter and flutter control technique of blowing.
*ACTA Energ. Solar. Sinica*. 403-407 - Jin, Y.; Yuan, X. (2002). Analysis of an airfoil’s flutter control technique of blowing by a fluid - structure coupling method.
*ACTA Aero. Sinica*.**20**. (3), 267-273 - Jin, Y.; Yuan, X. (2002). Numerical study of unsteady viscous flow past oscillating airfoil.
*Wind Eng*.**25**. (3), 227-237 - Jin, Y.; Yuan, X.; Shin B. R. (2002). Aeroelastic analysis of an airfoil's stall flutter at large mean incidence angle.
*J. Eng. Thermo*.**23**. (5), 573-575