Local Velocity Fields are determined using Particle Image Velocimetry, where the deposition of tracer particles between highspeed images corresponds to the local velocity vectors. In the animation on the right side, the tracer particles are following the streamlines around the an air Taylor bubble fixed in a counter current flow, where the channel diameter is D=6mm.
Concentration fields of dissolved gases can be measured by Laser-Induced Fluorescence (LIF) and with Confocal Laser Scanning Microscopy (spatial resolution of 5 microns). Fluorescent dyes, which are sensitive to dissolved gases are used to measure and visualize concentration fields during the mass transfer investigations of O2 and CO2 bubbles. For example, the sensitive property of a ruthenium complex with respect to the dissolved oxygen in the aqueous medium. The fluorescent response having lower intensities, the higher the concentration of dissolved oxygen is in the fluid.
Thanks to these measurement methods the SPP1506 will deliver sustainable experimental data and enables validation of numerical investigations that allow new insights into the transport processes of fluidic interfaces.
This project is supported by the German Research Foundation (DFG) within the priority program 1506 "Transport Processes at Fluidic Interfaces".
Project manager: Sven Kastens, M.Sc., (Dipl.-Ing. Christoph Meyer)
Paper:
Kastens, S.; Timmermann, J.; Strassl, F.; Rampmaier, R. F.; Hoffmann, A.; Herres-Pawlis, S.; Schlüter, M.: Test system for the investigation of reactive Taylor bubbles. Chem. Eng. Tech., 2017, 40(8), pp. 1494-1501, DOI: 10.1002/ceat.201700047
Falconi, C. J.; Lehrenfeld, C.; Marschall, H.; Meyer, C.; Abiev, R.; Bothe, D; Reusken, A.; Schlüter, M.; Wörner, M.: Numerical and experimental analysis of local flow phenomena in laminar Taylor flow in a square mini-channel, Physics of Fluids, 2016, 28, 012109-1 - 012109-23, DOI: 10.1063/1.4939498.
Kastens, S.; Hosoda, S.; Schlüter, M.; Tomiyama, A.: Mass Transfer from Single Taylor Bubbles in Mini Channels, Chemical Engineering & Technology, 2015, 38(11), special Issue: "Multiscale Multiphase Process Engineering" (Editorial: Schlüter, M.; Bothe, D.; Terasaka, K.), pp. 1925-1932, DOI: 10.1002/ceat.201500065.
Meyer, C.; Hoffmann, M.; Schlüter, M.: Micro-PIV analysis of gas-liquid Taylor flow in a vertical oriented square shaped fluidic channel, International Journal of Multiphase Flow, 2014, 67, S. 140-148, DOI: 10.1016/j.ijmultiphaseflow.2014.07.004.
Aland, S.; Lehrenfeld, C.; Marschall, H.; Meyer, C.; Weller, S: Accuracy of two-phase flow simulations: The Taylor Flow benchmark, PAMM-Proceedings in Applied Mathematics and Mechanics, 2013, 13(1), S. 595 – 598, DOI: 10.1002/pamm.201310278.
Chapter in Books:
Kastens, S.; Meyer, C.; Hoffmann, M.; Schlüter, M.: Experimental Investigation and Modelling of Local Mass Transfer Rates in Pure and Contaminated Taylor Flows, in Transport Processes at Fluidic Interfaces (ISBN 978-3-319-56602-3), Bothe, D.; Reusken, A. (Eds.), Advances in Mathematical Fluid Mechanics, 2017, DOI: 10.1007/978-3-319-56602-3_21
Project periods:
01.07.2010 - 30.06.2013: Dipl.-Ing. Christoph Meyer
01.08.2013 - 31.07.2016: M.Sc. Sven Kastens
Project partner:
Prof. Dr. Dieter Bothe, Technische Universität Darmstadt, Mathematische Modellierung und Analysis, Center of Smart Interfaces (Coordinator of the SPP 1506)
Prof. Dr. Arnold Reusken, RWTH Aachen, Chair of Numerical Mathematics (Coordinator of the SPP 1506)
Prof. Dr. Akio Tomiyama, Kobe University, Department of Mechanical Engineering
Prof. Dr-Ing. Uwe Hampel, TU Dresden, Institut für Energietechnik, AREVA-Stiftungsprofessur für Bildgebende Messverfahren für die Energie- und Verfahrenstechnik und Helmholtz-Zentrum Dresden-Rossendorf, Institut für Fluiddynamik, Abteilung Experimentelle Thermofluiddynamik
Dr.-Ing. M. Wörner, Karlsruher Institut für Technologie, Institut fuer Katalyseforschung und -technologie (IKFT)
Prof. Dr.-Ing. I. Smirnova, Institut für Thermische Verfahrenstechnik, TU Hamburg Harburg