Generation and Optimization of Real-Time Code for Embedded Multiprocess and Multiprocessor Systems (E = Mp2)

Fact Sheet

AcronymE = Mp2
NameGeneration and Optimization of Real-Time Code for Embedded Multiprocess and Multiprocessor Systems
(in German: Generierung und Optimierung von Echtzeitfähigem Code für Eingebettete Multiprozess- und Multiprozessor-Systeme)
Role of TUHHApplicant
Start Date01/02/2012
End Date30/09/2017
Funds DonorDeutsche Forschungsgemeinschaft (DFG)

Summary

During the design of safety-critical real-time systems like, e.g., airbag or flight attitude controllers, their behavior is specified at a high abstraction level. Compilers are an indispensible tool on the way from such a model-based specification to an actual implementation. For singlecore and singleprocess systems, compilers have recently been extended to support real-time properties already during compilation. For multiprocess and multiprocessor systems, compilers currently lack such a support despite of the increasing relevance of such parallel systems.

E = Mp2 aims to provide a software development environment for multiprocess and multiprocessor systems which produces efficient and optimized program code that provably meets real-time constraints. For this purpose, it has to be clarified how compiler and scheduler of an operating system need to cooperate. In addition, novel timing models supporting response times of processes and schedulability of entire systems need to be developed. Based on these timing models, novel compiler optimizations targeting on worst-case timing aspects and schedulability are designed.

In multiprocess systems, tasks can preempt each other and thus interfere. E = Mp2 develops compiler optimizations considering such context switches and scheduling strategies. In multiprocessor systems, different cores can access shared resources (e.g., buses or memories) at the same time and thus can cause additional interference. Therefore, this project works on compiler optimizations minimizing the worst-case timing of such systems by considering accesses to shared resources.

E = Mp2 Publications of the Embedded Systems Design Group

[176888]
Title: A Unified WCET Analysis Framework for Multicore Platforms.
Written by: Sudipta Chattopadhyay, Lee Kee Chong, Abhik Roychoudhury, Timon Kelter, Peter Marwedel and Heiko Falk
in: <em>ACM Transactions on Embedded Computing Systems (TECS)</em>. July (2014).
Volume: <strong>13</strong>. Number: (4s),
on pages:
Chapter:
Editor:
Publisher: ACM:
Series: 20140710-acm-tecs-chattopadhyay.pdf
Address:
Edition:
ISBN: 10.1145/2584654
how published: 14-25 CCR+14 TECS
Organization:
School:
Institution:
Type: &copy; ACM, 2014. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published
DOI:
URL:
ARXIVID:
PMID:

Note: hfalk, ESD, emp2, tacle, WCC

Abstract: With the advent of multicore architectures, worst case execution time (WCET) analysis has become an increasingly difficult problem. In this article, we propose a unified WCET analysis framework for multicore processors featuring both shared cache and shared bus. Compared to other previous works, our work differs by modeling the interaction of shared cache and shared bus with other basic microarchitectural components (e.g., pipeline and branch predictor). In addition, our framework does not assume a timing anomaly free multicore architecture for computing the WCET. A detailed experiment methodology suggests that we can obtain reasonably tight WCET estimates in a wide range of benchmark programs.