77. Taborda, M. A.; Sommerfeld, M.; Muniz, M.: LES-Euler/Lagrange modelling of bubble columns considering mass transfer, chemical reactions and effects of bubble dynamics; Chemical Engineering Science, 2021, 229, pp. 116121, DOI:10.1016/j.ces.2020.116121. 

76. Kemper, P.; Küstermann, E.; Dreher, W.; Helmers, T.; Mießner, U.; Besser, B.; Thöming, J.: Magnetic Resonance Imaging as a Tool to Study Hydrodynamics Inside Gas‐Liquid Taylor Flows Non‐Invasively; Chemical Engineering & Technology, 2021, 44(3), pp. 465 - 476, DOI: 10.1002/ceat.202000509.


75. Specht, P.; Oßberger, M.; Klüfers, P.; Schindler, S.: Kinetic studies on the reaction of NO with iron(ii) complexes using low temperature stopped-flow techniques; Dalton Trans, 2020, 49(27), pp. 9480 - 9486, DOI:10.1039/D0DT01764G.

74. Muniz, M.; Sommerfeld, M.: On the force competition in bubble columns: A numerical study, International Journal of Multiphase Flow, 2020, 128, pp. 103256, DOI:10.1016/j.ijmultiphaseflow.2020.103256.

73. Lerch, M.; Weitzer, M.; Stumpf, T.-D.; Laurini, L.; Hoffmann, A.; Becker, J.; Miska, A.; Göttlich, R.; Herres-Pawlis, S.; Schindler, S.: Kinetic Investigation of the Reaction of Dioxygen with the Copper(I) Complex [Cu(PimiPr2)(CH3CN)]CF3SO3 {PimiPr2 = Tris[2‐(1,4‐diisopropylimidazolyl)]phosphine}, European Journal of Inorganic Chemistry, 2020, accepted, DOI: 10.1002/ejic.202000462.

72. Helmers, T.; Kemper, P.; Mießner, U.: Refractive index matching (RIM) using double-binary liquid-liquid mixtures, Experiments in Fluid, 2020, 61, pp. 64, DOI.10.1007/s00348-020-2892-1.

71. Kováts, P.; Thévenin, D.; Zähringer, K.: Influence of viscosity and surface tension on bubble dynamics and mass transfer in a model bubble column, International Journal of Multiphase Flow, 2020, 123, pp. 103174, DOI:10.1016/j.ijmultiphaseflow.2019.103174.

70. Gast, S.; Nieken, U.; Tuttlies, U.S.: Kinetic study of the toluene oxidation in homogeneous liquid pahse, Chemical Engineering Science, 2020, 217, pp. 115500, DOI:10.1016/j.ces.2020.115500.


69. Turek, S.; Mierka, O.; Bäumler, K.: Numerical Benchmarking for 3D Multiphase Flow: New Results for a Rising Bubble, Radu, F.; Kumar, K.; Berre, I.; Nordbotten, J.; Pop, I.: Lecture Notes in Computational Science and Engineering, 2019, 126, 593-601, Numerical Mathematics and Advanced Applications, Springer.

68. Helmers, T.; Kemper, P.; Thöming, J.; Mießner, U.: Modeling the Excess Velocity of Low-Viscous Taylor Droplets in Square Microchannels, Fluids, 2019, 4 (3), p. 162, DOI:103390/fluids4030162.

67. Böhm, L.; Hohl, L.; Bliatsiou, C.; Kraume, M.: Mulitphase Stirred Tank Biorecators - New Geometrical Coencepts and Scale-up Approaches, Chemie Ingenieur Technik, 2019, DOI:10.1002/cite.201900165.

66. Felis, F.; Strassl, F.; Laurini, L.; Dietrich, N.; Billet, A.-M.; Roig, V.; Herres-Pawlis, S.; Loubière, K.: Using a bio-inspired copper complex to investigate reactive mass transfer around an ogygen bubble rising freely in a thin-gab cell, Chemical Engineering Science, 2019, 207, pp. 1256-1269, DOI:10.1016/j.ces.2019.07.045.

65. Monsch, G.; Klüfers, P.: [Fe(H2O)5(NO)]2+, das Chromophor des “braunen Rings”, Angewandte Chemie, 2019, 131 (25), pp. 8654-8659, DOI:10.1002/ange.201902374.

64. In-Iam, A.; Wolf, M.; Wilfer, C.; Schaniel, D.; Woike, T.; Klüfers, P.: {FeNO}7‐Type Halogenido Nitrosyl Ferrates: Syntheses, Bonding, and Photoinduced Linkage Isomerism, Chemistry - A European Journal, 2019, 25 (5), pp. 1304-1325, DOI:10.10002/chem.201804565.

63. Kameke, A.v.; Kastens, S.; Rüttinger, S.; Herres-Pawlis, S.; Schlüter, M.: How coherent structures dominate the residence time in a bubble wake: An exerpimental example, Engineering Science, 2019, 207, pp. 317-326, DOI:10.1016/j.ces.2019.06.033.

62. Rüttinger, S.; Hoffmann, M.; Schlüter, M.: How do vortex structures influence boundary layer dynamics in gas-liquid systems?, Chemical Engineering and Technology, 2019, 42 (7), pp. 1421-1426, DOI:10.1002/ceat.201900035.

61. Weiner, A.; Hillenbrand, D.; Marschall, H.; Bothe, D.: Data-driven subgrid-scale modeling for convection-dominated concentration boundary layers, Chemical Engineering and Technology, 2019, 42 (7), pp. 1349-1356, Doi:10.1002/ceat.201900044.


60. Guhathakurta, J.; Schurr, D.; Rinke, G.; Dittmeyer, R.; Simon, S.: Simultaneous in situ characterisation of bubble dynamics and a spatially resolved concentration profile: a combined Mach-Zehnder holography and confocal Raman-spectroscopy sensor system, Journal of Sensors and Sensor Systems, 2017, 6, pp. 223-236, Doi;10.5194/jsss-6-223-2017.

59. Pesci,C.; Weiner, A.; Bothe, D.: Computational analysis of single bubbles influenced by suluble surfactant, Journal of Fluid Mechanics, 2018, DOI:10.1017/jfm.2018.723.

58. Kastens, S.; Timmermann, J.; Strassl, F.; Rampmaier, R.F.; Hoffmann, A.; Herres-Pawlis, S.; Schlüter, M.: Test system for the investigation of reactive Taylor bubbles. Chem. Eng. Tech., 2017m 40(8), pp. 1494-1501, DOI:10.1002/ceat.201700047

57. Krauß, M., Rzehak, R.: Reactive absorption of CO2 in NaOH: An Euler simulation study, Chemical Engineering Science, 2018, 181, pp. 199-214, DOI:10.1016/j.ces.2018.01.009.

56. Miska, A., Schurr, D., Rinke, G., Dittmeyer, R., Schindler, S.: From moder compounds to applications: Kinetic studies on the activation of dioxygen using an iron complex in a SuperFocus mixer, Chemical Engineering Science, 2018, DOI:10.1016/j.ces.2018.05.064.

55. Benders, S., Strassl, F., Fenger, B., Blümlich, B., Herres-Pawlis, S., Küppers, M.: Imaging of Coppre Oxygenation reactions in a bubble flow, Magnetic Resonance in Chemistry, 2018, DOI:10/1002/mrc.4742.

54. Paul, M.; Strassl, F.; Hoffmann, A.; Hoffmann, M.; Schlüter, M.; Herres-Pawlis, S.: Reachtion systems for bubbly flows, European Journal of Inorganic Chemistry, accepted publication, 2018, DOI:10.1002/ejic.201800146.

53. Kováts, P.; Thévenin, D.; Zähringer, K.: Characterizing fluid dynamics in a bubble column aimed for the determination of reactive mass transfer, Heat and Mass Transfer, 2018, 54, pp. 453-461, DOI:10.1007/humt.00231.017.2142.0.

52. Falcone, M.; Bothe, D.; Marschall, H.: 3D direct numerical simulations of reactive mass transfer from deformable single bubbles: An analysis of mass transfer coefficients and reaction selectivities, Chemical Engineering Science, 2018, 177, pp. 523-536, DOI:10.1016/j.ces.2017.11.024.

51. Parekh, J.; Rzehak, R.: Euler-Euler multiphase CFD-simulation with full Reynolds stress model and anisotropic bubble-induced turbulence, International Journal of Multiphase Flow, 2018, 99, pp. 231-245, Doi:10.1016/j.ijmultiphaseflow.2017.10.012.


50. Beck, D.; Belz, A.; In-Iam, A.; Mayer, P.; Klüfers, P.: NO(HSO4), a Fairly Ionic Solid, ZAAC Journal of inorganic and General Chemistry, 2017, 643, pp. 1191-1194, DOI:10.1002/zaac.201700247.

49. Strassl, F.; Grimm-Lebsanft, B.; Rukser, D.; Biebl, F.; Biednow, M.; Brett. C.; Timmermann, R.; Metz, F.; Hoffmann, A.; Rübhausen, M.; Herres-Pawlis, S.: Oxygen activation by copper complexes with an aromatic bis(guanidine) ligand,  European Journal of Inorganic Chemistry, 2017, 27, pp. 3350 – 3359, DOI:10.1002/ejic.201700528.

48. Hannigan, S. F.; Arnoff, A. I.; Neville, S. E.; Lum, J. S.; Golen, J. A.; Rheingold A. L.; Orth, N.; Invanović-Burmazović, I.; Liebhäuser, P.; Rösener, T.; Stanek, J.; Hoffmann, A.; Herres-Pawlis, S.; Doerrer, L. H.: On the Way to a Trisanionic {Cu3O2} Core for Oxidase Catalysis: Evidence of an Asymmetric Trinuclear Precursor Stabilized by Perfluoropinacolate Ligands, Chemistry A European Journal, 2017, 23, pp. 8212 – 8224, DOI:10.1002/chem.201605926.

47. Liebhäuser, P.; Keisers, K.; Hoffmann, A.; Schnappinger, T.; Sommer, I.; Thoma, A.; Wilfer, C.; Schoch, R.; Stührenberg, K.; Bauer, M.; Dürr, M.; Invanović-Burmazović, I.; Herres-Pawlis, S.: Record Broken: A Copper Peroxide Complex with Enhanced Stability and Faster Hydroxylation Catalysis, Chemistry A European Journal, 2017, 23, pp. 12171-12183, DOI:10.1002/chem.201700887.

46. Weiner, A.; Bothe, D.: Advanced subgrid-scale modeling for convection-dominated species transport at fluid interfaces with application to mass transfer from rising bubbles, Journal of Computational Physics, 2017, 347, pp. 261-289 DOI:10.1016/

45. Kováts, P.; Thévenin, D.; Zähringer, K.: Characterizing fluid dynamics in a bubble column aimed for the determination of reactive mass transfer. Heat and Mass Transfer, 2017, accepted.

44. Hlawitschka, M. W.; Kováts, P.; Zähringer, K.; Bart, H.-J.: Simulation and experimental validation of reactive bubble colums reactors, Chemical Engineering Science, 2017, 170, pp. 306-319, DOI.10.1016/j.ces.2016.12.053.

43. Schlüter, M.; Billet, A.-M.; Herres-Pawlis, S.: Reactive Bubbly Flows, Chemical Engineering & Technology, 2017, 40(8), p. 1384, DOI:10.1002/ceat.201770085.

42. Kastens, S.; Timmermann, J.; Strassl, F.; Rampmaier, R.F.; Hoffmann, A.; Herres-Pawlis, S.; Schlüter, M.: Test System for the Investigation of Reactive Taylor Bubbles, Chemical Engineering & Technology, 2017, 40(8), pp. 1494-1501, DOI:10.1002/ceat.201700047.

41. Miska, A.; Norbury, J.; Lerch, M.; Schindler, S.: Dioxygen activation: potential future technical applications in reactive bubbly flows, Chemical Engineering & Technology, 2017, 40(8), pp. 1522-1526, DOI:10.1002/ceat.201600684.

40. Haase, K; Kück, U. D.; Thöming, J.; Kähler, C. J.: On the emulation of bubble induced turbulence by randomly moving particles in a grid structure, Chemical Engineering & Technology, 2017, 40(8), pp. 1502-1511, DOI:10.1002/ceat.201600687.

39. Oppermann, A.; Laurini, L.; Etscheidt, F.; Hollmann, K.; Strassl, F.; Hoffmann, A.; Schurr, D.; Dittmeyer, R.; Rinke, G.; Herres-Pawlis, S.: Detection of Copper Bisguanidine NO Adducts at –80°C and 35°C by UV/Vis spectroscopy using an immersion probe and a SuperFocus mixer, Chemical Engineering & Technology, 2017, 40(8), pp. 1475-1483, DOI:10.1002/ceat.201600691.

38. Mießner, U.; Kück, U. D.; Haase, K.; Kähler, C. J., Fritsching, U.; Thöming, J.: Experimental assessment of a new device to mimic bubble swarm turbulence, Chemical Engineering & Technology, 2017, 40(8), pp. 1466-1474, DOI:10.1002/ceat.201600688.

37. Hlawitschka, M. W.; Oßberger, M.; Backes, C.; Klüfers, P., Bart, H.-J.: Reactive Mass Transfer of Single NO Bubbles and Bubble Bouncing in Aqueous Ferric Solutions – A Feasibility Study, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles, 2017, 72(2), 11 pages, DOI: 10.2516/ogst/2017006.

36. Kipping, R.; Kryk, H.; Schleicher, E.; Gustke, M.; Hampel, U.: Application of wire-mesh sensor for the study of chemical species conversion in a bubble column during chemical absorption of carbon dioxide in sodium hydroxide, Chemical Engineering & Technology, 2017, 40(8), pp. 1425-1433, DOI:10.1002/ceat.201700045.

35. Gast, S.; Matthies, J.; Tuttlies, U.; Nieken, U.: A novel experimental setup for kinetic studies of toluene oxidation in homogeneous phase, Chemical Engineering & Technology, 2017, 40(8), pp. 1445-1452, DOI:10.1002/ceat.201700005.

34. Kováts, P.; Thévenin, D.; Zähringer, K.: Investigation of mass transfer and hydrodynamics in a model bubble column, Chemical Engineering & Technology, 2017, 40(8), pp. 1434-1444, DOI:10.1002/ceat.201600679.

33. Schurr, D.; Guhathakurta, J.; Simon, S.; Rinke, G.; Dittmeyer, R.: Characterization of a Raman spectroscopy and holographic system for gasliquid flows in microchannels, Chemical Engineering & Technology, 2017, 40(8), pp. 1400-1407, DOI:10.1002/ceat.201600622.

32. Falcone, M.; Marschall, H.: Explicit Radial-Basis-Function-Based Finite-Difference Method for Interfacial Mass-Transfer Problems, Chemical Engineering & Technology, 2017, 40(8), pp. 1385-1390, DOI:10.1002/ceat.201600536.

31. Tastan, Ü.; Guba, F.; Ziegenbalg, D.: "Switchable" Reactions for the Investigation of Reactive Mass Transfer Processes. Chemical Engineering & Technology, 2017, 40(8), pp. 1418-1424, DOI:10.1002/ceat.201600586.

30. Merker, D.; Böhm, L.; Oßberger, M.; Klüfers, P.; Kraume, M.: Mass transfer in reactive bubbly flows – A single bubble study. Chemical Engineering & Technology, 2017, 40(8), pp. 1391-1399, DOI: 10.1002/ceat.201600715.

29. Mierka, O.; Munir, M.; Spille, C.; Timmermann, J.; Schlüter, M. Turek, S.: Reactive liquid flow simulation of micromixers based on grid deformation techniques. Chemical Engineering & Technology, 2017, 40(8), pp. 1408-1417, DOI: 10.1002/ceat.201600686.

28. Krauß, M.; Rzehak, R.: Reactive absorption of CO2 in NaOH: Detailed study of enhancement factor models, Chemical Engineering Science, 2017, 166, pp. 193-209, DOI: 10.1016/j.ces.2017.03.029

27. Wolf, M.; Klüfers, P.: Structure and Bonding of High-Spin Nitrosyl–Iron(II) Compounds with Mixed N,O-Chelators and Aqua Ligands, Eur. J. Inorg. Chem., 2017(17), pp. 2303-2312, DOI: 10.1002/ejic.201601329.

26. Aas, B.; Klüfers, P.: The Structural Chemistry of Stable High-Spin Nitrosyl–Iron(II)Compounds with Aminecarboxylato Co-Ligands in Aqueous Solution, Eur. J. Inorg. Chem., 2017(17), pp. 2313–2320, DOI: 10.1002/ejic.201601330.

25. Rzehak, R.; Krauß, M.; Kováts, P.; Zähringer, K.: Fluid Dynamics in a Bubble Column: New Experiments and Simulations, Int. J. Multiphase Flow, 2017, 89, pp. 299-312, DOI: 10.1016/j.ijmultiphaseflow.2016.09.024.

24. Weber, P. S.; Marschall, H.; Bothe, D.: Highly accurate two-phase species transfer based on ALE Interface Tracking. International Journal of Heat and Mass Transfer, 2017, 104, pp. 759–773, DOI: 10.1016/j.ijheatmasstransfer.2016.08.072.

23. Heithoff, S.; Kück, U. D.; Volkmer, P.; Räbiger, N.; Fritsching, U.: Modeling mass transfer in gas-liquid two phase flow in a Jetzone-Loopreactor, The Canadian Journal of Chemical Engineering, 2017, 95(1), pp. 180-186, DOI:  10.1002/cjce.22660.


22. Liebhäuser, P.; Hoffmann, A.; Herres-Pawlis, S.: Tyrosinase Models: Synthesis, Spectroscopy, Theory, and Catalysis, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, accepted 2016, DOI: 10.1016/B978-0-12-409547-2.11554-9.

21. Rzehak, R.; Ziegenhein, T.; Kriebitzsch, S.; Krepper, E.; Lucas, D.: Unified modeling of bubbly flows in pipes, bubble columns, and airlift columns, Chemical Engineering Science, 2016, 157, pp. 147-158, DOI: 10.1016/j.ces.2016.04.056.

20. Hlawitschka, M. W.; Kováts, P.; Zähringer, K.; Bart, H.-J.: Simulation and Experimental Validation of Reactive Bubble Column Reactors, Chemical Engineering Science, 2016, accepted and in press, DOI: 10.1016/j.ces.2016.12.053.

19. Gründing, D. M.; Fleckenstein, S.; Bothe, D.: A Subgrid-Scale Model for Reactive Concentration Boundary Layers for 3D Mass Transfer Simulations with Deformable Fluid Interfaces, International Journal of Heat and Mass Transfer, 2016, 101, pp. 476-487, DOI: 10.1016/j.ijheatmasstransfer.2016.04.119.

18. Liao, J.; Ziegenhein, T.; Rzehak, R.: Bubbly flow in an airlift column: a CFD study. Journal of Chemical Technology & Biotechnology, 2016, 91, 11, pp. 2904-2915, DOI: 10.1002/jctb.4917.

17. Rzehak, R.; Krepper, E.: Euler-Euler Simulation of Mass-transfer in Bubbly Flows, Chemical Engineering Science, 2016, 155, pp. 459-468, DOI: 10.1016/j.ces.2016.08.036.

16. Timmermann, J.; Hoffmann, M.; Schlüter, M. (2016): Influence of bubble bouncing on mass transfer and chemical reaction, Chemical Engineering & Technology, 2016. 39(10), pp. 1955-1962, DOI: 10.1002/ceat.201600299.

15. Hoffmann, A.; Wern, M.; Hoppe, T.; Witte, M.; Haase, R.; Liebhäuser, P.; Glatthaar, J.; Herres-Pawlis, S.; Schindler, S.: Hand in Hand: Experimental and Theoretical Investigations into the Reactions of Copper(I) Mono- and Bis(guanidine) Complexes with Dioxygen, Eur. J. Inorg. Chem. 2016, 29, pp. 4744–4751. DOI: 10.1002/ejic.201600906.

14. Rzehak, R.: Modeling of Mass-transfer in Bubbly Flows Encompassing Different Mechanisms. Chemical Engineering Science, 2016, 151, pp. 139-143, DOI: 10.1016/j.ces.2016.05.024.

13. Hlawitschka, M. W., Schäfer, J., Hummel, M., Garth, C., Bart, H.-J.: Populationsbilanzmodellierung mit einem Mehrphasen-CFD-Code und vergleichende Visualisierung, Chem. Ing. Techn. 88 (10) 2016, 1480-1491, DOI: 10.1002/cite.201600006.

12. Hlawitschka, M. W., Drefenstedt, S., Bart, H.-J.: Local Analysis of CO2 Chemisorption in a Rectangular Bubble Column Using a Multiphase Euler-Euler CFD Code, J. Chem. Eng. Process. Technol. 7:300. DOI: 10.4172/2157-7048.1000300.

11. Schurr, D.; Strassl, F.; Liebhäuser, P.; Rinke, G.; Dittmeyer, R.; Herres-Pawlis, S.: Decay kinetics of sensitive bioinorganic species in a SuperFocus mixer at ambient conditions. Reaction Chemistry & Engineering, 2016, 1, pp. 485-493. DOI: 10.1039/C6RE00119J.

10. Strassl, F.; Timmermann, J.; Schlueter, M.; Herres-Pawlis, S.: Kinetik der Sauerstoffaktivierung, GIT Labor-Fachzeitschrift, 2016, 9, pp. 39-41.

9. Schurr, D.; Guhathakurta, J.; Baroud, Y.; Simon, S.; Rinke, G.; Dittmeyer, R.: Local concentration measurements in the wake of bubbles based on in-situ Raman spectroscopy and statistical analysis, 9th International Conference on Multiphase Flow (ICMF 2016), Florence, Italy, 22-27 May 2016, paper.

8. Guhathakurta, J.; Li, W.; Simon, S.: Accuracy of 3D position measurement of spherical objects with a holographic single camera setup, Proceedings of the 18. GMA/ITG-Fachtagung Sensoren und Messsysteme 2016, Nürnberg, Germany, 10-11 May 2016, DOI: 10.5162/sensoren2016/6.1.4.


7. Kováts, P.; Thévenin, D.; Zähringer, K.: Fluid dynamical characterization of a bubble column for investigation of mass-transfer, in: Conference on Modelling Fluid Flow (CMFF '15), The 16th International Conference on Fluid Flow Technologies (Vad, J., Ed.), Budapest, Hungary, 1-4 September 2015.

6. Haase, K; Baczyzmalski, D.; Cierpka, C.; Kähler, C.J.: Charakterisierung von Blasen und deren Nachlauf in turbulenter Grundströmung, in: 23. Fachtagung "Lasermethoden in der Strömungsmesstechnik", Dresden, Germany, 8-10 September 2015.

5. Hlawitschka, M. W.; Edgard, W.; Bart, H.-J.: Bubble Interactions – Repulsion Events, Chemie Ingenieur Technik, 87 (8), 2015, p. 1079, 28 JUL 2015, DOI: 10.1002/cite.201550094.

4. Attarakih, M.; AL-Slaihat, F.; Hlawitschka, M. W.; Bart, H.-J.: Modelling the hydrodynamics of bubble columns using coupled OPOSPM-maximum entropy method, Computer-Aided Chemical Engineering, 2015, 37, 203-208, DOI: 10.1016/B978-0-444-63578-5.50029-3.


3. Zähringer, K.; Wagner, L.-M.; Kováts, P.; Thévenin, D.: Experimental characterization of the mass transfer from gas to liquids in a two-phase bubble column, in: 7th International Workshop on Transport Phenomena with Moving Boundaries, Berlin, Germany, October 2014.

2. Zähringer, K.; Kováts, P.; Wagner, L.-M.; Thévenin, D.: Experimentelle Charakterisierung des Stofftransports in Mehrphasenreaktoren durch 2-Farben-LIF, ProcessNet Jahrestagung, Aachen 2014, Paper 7285.

1. Zähringer, K.; Kováts, P.; Wagner, L. M.; Thévenin, D.: Experimentelle Charakterisierung des Stofftransports in Mehrphasenreaktoren durch Zwei-Farben-LIF, Chemie Ingenieur Technik, 86 (9), 2014, pp. 1527-1527. DOI: 10.1002/cite.201450120.