Project description

The aim of this project is creating new bioinspired materials, through the design, synthesis and characterization of hierarchically structured composites. Such materials consist of hard (ceramic/metal) and soft phases (polymers and organic ligands).

Pre-structured functionalized nanoparticles received from projects A1 and A2 are assembled into a material of progressively higher hierarchical levels. The processing steps involve self-assembly, hot-pressing and spouted bed spray granulation (with projects A2 and A3). The objective for the highest hierarchical level is an anisotropic brick-and-mortar structure, analogous to the one characterizing nacre and other exceptionally strong and tough natural materials. The composites, as well as their individual hierarchical levels, will be characterized both structurally (in collaboration with projects A7, Z2 and Z3) and mechanically (in collaboration with projects Z2 and Z3), from the nano- to the macro-scale.

The key scientific question to be addressed concerns the role played by each building unit, at the different length scales, in the material’s macroscopic features. To do so, it is imperative to determine which properties and arrangements of the building units (polymeric, ceramic, metallic and nanocomposite particles) are necessary and sufficient to attain the desired mechanical and multifunctional characteristics in the final bulk material. Gaining this knowledge will ultimately lead to the tailored design of novel nanocomposites.

 

 

Project leader

Prof. Dr. rer. nat. Gerold
Schneider,
TUHH
Contact

 Keywords

nanocomposite

self-assembly

hierarchy

ceramics

metal                         polymer

Publications

1. A. Dreyer et al.: Organically linked iron oxide nanoparticle supercrystals with exceptional isotropic mechanical properties. Nature Materials 15, 522-528, 2016 - with A1, A2, Z3

2. S. Behr et al.: Shear strength and interfacial toughness characterization of sapphire-epoxy interfaces for nacre-inspired composites. ACS Applied Materials & Interfaces 8(40), 27322-27331, 2016

3. S. Behr et al.: Large-scale parallel alignment of platelet-shaped particles through gravitational sedimentation. Scientific Reports. 5, 9984, 2015 - with Z2

... and more on the list of publications.

 

 


open as PDF.

 

Quarks & Co
Broadcast 2014-03-18
(courtesy of WDR, English translation (c) SFB 986)

A shorter version was already broadcast on 2014/01/26 at "[w] wie Wissen".