I3-Lab: Structural Integrity via Vibro-acoustic Modulation (VAM) Aiming at an Extension of Civil Infrastructure Lifecycle

Members:

  • Prof. Bodo Fiedler, Institute of Polymer and Composites (Mechanical Engineering)
  • Prof. Marcus Rutner, Institute of Metal and Composite Structures (Civil and Environmental Engineering)
  • Prof. Robert Meißner, Institute of Polymer and Composites (Mechanical Engineering)
  • Prof. Bernd-Christian Renner, Institute Smart Port (Electrical Engineering, Computer Science and Mathematics)
     

Our interdisciplinary research team is searching for an indicator for the detection and evaluation of microsized defects. This indicator results from nonlinear acoustic measurements on the infrastructure. This physics-based indicator should enable a reliable and early engineering judgement of evolving micro-sized defects in the material/structural components/ joints, quantification and subsequent prediction of the remaining lifetime of metal and fibre-reinforced composite structures.

The potential of the Vibro-acoustic Modulation (VAM) is obvious (Figure). The diagram plots the Modulation Index over the life cycles (fatigue life) of a metal component. The Modulation Index allows the detection of microstructural change at the notch tip long before visual appearance of the crack at the notch tip.

 

Current approaches for infrastructure monitoring use concepts which do not allow lifecycle predictions or sufficient local resolution of the defect evolution.  (e.g. iBAST). In contrast, the VAM-based approach is expected to provide a new system design with Transient Computing on the sensor knots with high local resolution of microsized defects in large-scale structures.

Objectives of the project are enhanced understanding through fundamental science, sustainable use of ressources, cost reduction of maintenance and enhancement of civil safety to the benefit of community and economy. - Tailored maintenance of infrastructure and minimizing of time and costs required for maintenance become possible through technically efficient, wireless, cost-efficient and energy-self-sustaing networked sensor technology.

 

More Information about I³-Labs at TUHH: www.tuhh.de/tuhh/forschung/forschungsfoerderung/i3-programm/i3-ausschreibungen.html

Related Publications: 

  • Dorendorf, L., Lalkovski, N., Rutner, M. Physical explanation for vibro-acoustic modulation due to local and global nonlinearities in a structure and its experimental and numerical validation. Journal of Sound and Vibration, Volume 528 (2022), 23 June 2022, 116885, https://doi.org/10.1016/j.jsv.2022.116885

  • Oppermann, P., Dorendorf, L., Renner, BC., Rutner, M., Nonlinear Modulation with Low-Power Sensor Networks using Undersampling, Structural Health Monitoring, Sage Publishing, Volume: 20 issue: 6, page(s): 3252-3264 (2022), https://doi.org/10.1177/1475921720982885 

  • Dorendorf, L., Lalkovski, N., Stolz, R., Rutner, M., Zuverlässigkeit der Vibro-Akustischen Modulationsmethode zur Strukturüberwachung von Metallen unter Ermüdungsbeanspruchung und ihr Potenzial für das Bauwesen, Deutscher Ausschuss für Stahlbau, DASt-Kolloquium, 31.03.-01.04.2020, Karlsruhe

  • Donskoy, D., Golchinfar, B.; Ramezani, M., Rutner, M., Hassiotis, S., Vibro-acoustic amplitude and frequency modulations during fatigue damage evolution AIP Conference Proceedings, 2019, 040004. https://doi.org/10.1063/1.5099754

  • Oppermann, P., Dorendorf, L., Boll, B., Gagani, A., Lalkovski, N., Renner, B.-C., Rutner, M., Meißner, R., Fiedler, BTowards Structural Health Monitoring using Vibro-Acoustic Modulation in the Real World, In: Proceedings of the 18th GI/ITG KuVS Fachgespräch "Sensornetze", 2019, Magdeburg, Germany. http://dx.doi.org/10.25673/28428

  • Stolz, R., Experimentelle Studie zur Zuverlässigkeit der Vibro-Akustischen Modulationsmethode für die Vorhersage der Restlebensdauer von metallischen Querschnitten unter Ermüdungslast, Masterarbeit, Technische Universität Hamburg, 2020 (ausgezeichnet mit dem SICK Wissenschaftspreis 2020)

  • Witte, H-K., Restlebensdauer von Aluminiumproben bei schwingender Belastung mit Hilfe einer nichtlinearen akustischen Methode im Hinblick auf den Einfluss ortsverschiedener Mikrorisse im Werkstoff, Masterarbeit, Technische Universität Hamburg, 2019 (ausgezeichnet mit dem Preis des Bauindustrieverband Hamburg Schleswig-Holstein 2020)