Prof. Dr.-Ing. Tobias Knopp

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 209
22529 Hamburg
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 56794
Fax: 040 / 7410 45811
E-Mail: t.knopp(at)
E-Mail: tobias.knopp(at)



  • Head of the Institute for Biomedical Imaging
  • Editor-in-chief of the International Journal on Magnetic Particle Imaging (IJMPI)

Consulting Hours

  • On appointment

Research Interests

  • Tomographic Imaging
  • Image Reconstruction
  • Signal- and Image Processing
  • Magnetic Particle Imaging

Curriculum Vitae

Tobias Knopp received his Diplom degree in computer science in 2007 and his PhD in 2010, both from the University of Lübeck with highest distinction. For his PHD on the tomographic imaging method Magnetic Particle Imaging (MPI) he was awarded with the Klee award from the DGBMT (VDE) in 2011. From 2010 until 2011 he led the MAPIT project at the University of Lübeck and published the first scientific book on MPI. In 2011 he joined Bruker Biospin to work on the first commercially available MPI system. From 2012 until 2014 he worked at Thorlabs in the field of Optical Coherence Tomography (OCT) as a software developer. In 2014 he has been appointed as Professor for experimental Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology.


Title: Discriminating nanoparticle core size using multi-contrast MPI.
Written by: C. Shasha, E. Teeman, K. M. Krishnan, P. Szwargulski, T. Knopp, and M. Möddel
in: <em>Physics in Medicine and Biology</em>. (2019).
Volume: Number:
on pages:
how published:


Note: article, multi-contrast

Abstract: Magnetic particle imaging (MPI) is an imaging modality that detects the response of a distribution of magnetic nanoparticle tracers to static and alternating magnetic fields. There has recently been exploration into multi-contrast MPI, in which the signal from different tracer materials or environments is separately reconstructed, resulting in multi-channel images that could enable temperature or viscosity quantification. In this work, we apply a multi-contrast reconstruction technique to discriminate between nanoparticle tracers of different core sizes. Three nanoparticle types with core diameters of 21.9nm, 25.3nm, and 27.7nm were each imaged at 21 different locations within the scanner field of view. Multi-channel images were reconstructed for each sample and location, with each channel corresponding to one of the three core sizes. For each image, signal weight vectors were calculated, which were then used to classify each image by core size. With a block averaging length of 10000, the median signal-to-noise ratio was 40 or higher for all three sample types, and a correct prediction rate of 96.7% was achieved, indicating that core size can effectively be predicted using signal weight vector classification with close to 100% accuracy while retaining high MPI image quality.