Prof. Dr.-Ing. Tobias Knopp

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 209
22529 Hamburg
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 56794
Fax: 040 / 7410 45811
E-Mail: t.knopp(at)
E-Mail: tobias.knopp(at)



  • Head of the Institute for Biomedical Imaging
  • Editor-in-chief of the International Journal on Magnetic Particle Imaging (IJMPI)

Consulting Hours

  • On appointment

Research Interests

  • Tomographic Imaging
  • Image Reconstruction
  • Signal- and Image Processing
  • Magnetic Particle Imaging

Curriculum Vitae

Tobias Knopp received his Diplom degree in computer science in 2007 and his PhD in 2010, both from the University of Lübeck with highest distinction. For his PHD on the tomographic imaging method Magnetic Particle Imaging (MPI) he was awarded with the Klee award from the DGBMT (VDE) in 2011. From 2010 until 2011 he led the MAPIT project at the University of Lübeck and published the first scientific book on MPI. In 2011 he joined Bruker Biospin to work on the first commercially available MPI system. From 2012 until 2014 he worked at Thorlabs in the field of Optical Coherence Tomography (OCT) as a software developer. In 2014 he has been appointed as Professor for experimental Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology.


Title: Efficient Joint Image Reconstruction of Multi-Patch Data reusing a Single System Matrix in Magnetic Particle Imaging.
Written by: P. Szwargulski, M. Möddel, N. Gdaniec and T. Knopp
in: <em>IEEE Transactions on Medical Imaging</em>. April (2019).
Volume: <strong>38</strong>. Number: (4),
on pages: 932-944
how published:
DOI: 10.1109/TMI.2018.2875829


Note: article, multi-patch

Abstract: Due to peripheral nerve stimulation the magnetic particle imaging (MPI) method is limited in the maximum applicable excitation-field amplitude. This in turn leads to a limitation of the size of the covered field of view (FoV) to few millimeters. In order to still capture a larger field of view, MPI is capable to rapidly acquire volumes in a multi-patch fashion. To this end, the small excitation volume is shifted through space using the magnetic focus fields. Recently it has been shown that the individual patches are preferably reconstructed in a joint fashion by solving a single linear system of equations taking the coupling between individual patches into account. While this improves the image quality, it is computationally and memory demanding since the size of the linear system increases in the best case quadratically with the number of patches. In this work, we will develop a reconstruction algorithm for MPI multi-patch data exploiting the sparsity of the joint system matrix. A highly efficient implicit matrix format allows for rapid on-the-fly calculations of linear algebra operations involving the system matrix. Using this approach the computational effort can be reduced to a linear dependence on the number of used patches. The algorithm is validated on 3D multi-patch phantom datasets and shown to reconstruct a large datasets with 15 patches in less than 22 seconds.