Prof. Dr.-Ing. Tobias Knopp

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 209
22529 Hamburg
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 56794
Fax: 040 / 7410 45811
E-Mail: t.knopp(at)uke.de
E-Mail: tobias.knopp(at)tuhh.de
ORCID: https://orcid.org/0000-0002-1589-8517

 

Roles

  • Head of the Institute for Biomedical Imaging
  • Editor-in-chief of the International Journal on Magnetic Particle Imaging (IJMPI)

Consulting Hours

  • On appointment

Research Interests

  • Tomographic Imaging
  • Image Reconstruction
  • Signal- and Image Processing
  • Magnetic Particle Imaging

Curriculum Vitae

Tobias Knopp received his Diplom degree in computer science in 2007 and his PhD in 2010, both from the University of Lübeck with highest distinction. For his PHD on the tomographic imaging method Magnetic Particle Imaging (MPI) he was awarded with the Klee award from the DGBMT (VDE) in 2011. From 2010 until 2011 he led the MAPIT project at the University of Lübeck and published the first scientific book on MPI. In 2011 he joined Bruker Biospin to work on the first commercially available MPI system. From 2012 until 2014 he worked at Thorlabs in the field of Optical Coherence Tomography (OCT) as a software developer. In 2014 he has been appointed as Professor for experimental Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology.

Publications

[183062]
Title: NFFT.jl: Generic and Fast Julia Implementation of the Nonequidistant Fast Fourier Transform.
Written by: T. Knopp, M. Boberg, and M. Grosser
in: <em>SIAM Journal on Scientific Computing</em>. (2023).
Volume: <strong>45</strong>. Number: (3),
on pages: C179-C205
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1137/22M1510935
URL: https://arxiv.org/abs/2208.00049
ARXIVID:
PMID:

[www]

Note: article, opensoftware, openaccess, generalsoftware

Abstract: The nonequidistant fast Fourier transform (NFFT) is an extension of the famous fast Fourier transform (FFT) that can be applied to nonequidistantly sampled data in time/space or frequency domain. It is an approximative algorithm that allows one to control the approximation error in such a way that machine precision is reached while keeping the algorithmic complexity in the same order as a regular FFT. The NFFT plays a major role in many signal processing applications and has been intensively studied from a theoretical and computational perspective. The fastest CPU implementations of the NFFT are implemented in the low-level programming languages C and C++ and require a compromise between code generalizability, code readability, and code efficiency. The programming language Julia promises new opportunities in optimizing these three conflicting goals. In this work we show that Julia indeed allows one to develop an NFFT implementation which is completely generic and dimension-agnostic and requires about two to three times less code than the other famous libraries NFFT3 and FINUFFT while still being one of the fastest NFFT implementations developed to date.