Prof. Dr.-Ing. Tobias Knopp

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 209
22529 Hamburg
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 56794
Fax: 040 / 7410 45811
E-Mail: t.knopp(at)uke.de
E-Mail: tobias.knopp(at)tuhh.de
ORCID: https://orcid.org/0000-0002-1589-8517

 

Roles

  • Head of the Institute for Biomedical Imaging
  • Editor-in-chief of the International Journal on Magnetic Particle Imaging (IJMPI)

Consulting Hours

  • On appointment

Research Interests

  • Tomographic Imaging
  • Image Reconstruction
  • Signal- and Image Processing
  • Magnetic Particle Imaging

Curriculum Vitae

Tobias Knopp received his Diplom degree in computer science in 2007 and his PhD in 2010, both from the University of Lübeck with highest distinction. For his PHD on the tomographic imaging method Magnetic Particle Imaging (MPI) he was awarded with the Klee award from the DGBMT (VDE) in 2011. From 2010 until 2011 he led the MAPIT project at the University of Lübeck and published the first scientific book on MPI. In 2011 he joined Bruker Biospin to work on the first commercially available MPI system. From 2012 until 2014 he worked at Thorlabs in the field of Optical Coherence Tomography (OCT) as a software developer. In 2014 he has been appointed as Professor for experimental Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology.

Publications

[164758]
Title: Sparsifying system matrices by combined usage of compressed sensing and extrapolation.
Written by: K. Scheffler, M. Grosser, M. Boberg, and T. Knopp
in: <em>12th International Workshop on Magnetic Particle Imaging (IWMPI 2023)</em>. (2023).
Volume: Number:
on pages: 1-1
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI:
URL: https://journal.iwmpi.org/index.php/iwmpi/article/view/493
ARXIVID:
PMID:

[www]

Note: inproceedings

Abstract: In magnetic particle imaging the calibration step for a system matrix based reconstruction is very time and memory consuming. System matrices need to be measured not only in the physical field of view, but also in a bigger overscan region to avoid artifacts, especially in the case of multi-patch magnetic particle imaging. There are several methods to reduce the total number of voxels that need to be measured, e.g. compressed sensing and system matrix extrapolation. In this work, we show that a combination of these two methods is possible by using compressed sensing on a sparse sampling pattern only in the field of view and extrapolating the signal in the overscan region afterwards. We demonstrate on measured data, that such a combination gives superior results than using only compressed sensing on the whole system matrix. This is clearly manifested in the reduction of noise in the reconstruction result, especially when using a high undersampling factor.