Prof. Dr.-Ing. Tobias Knopp

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 209
22529 Hamburg
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 56794
Fax: 040 / 7410 45811
E-Mail: t.knopp(at)uke.de
E-Mail: tobias.knopp(at)tuhh.de
ORCID: https://orcid.org/0000-0002-1589-8517

Roles

  • Head of the Institute for Biomedical Imaging
  • Editor-in-chief of the International Journal on Magnetic Particle Imaging (IJMPI)

Consulting Hours

  • On appointment

Research Interests

  • Tomographic Imaging
  • Image Reconstruction
  • Signal- and Image Processing
  • Magnetic Particle Imaging

Curriculum Vitae

Tobias Knopp received his Diplom degree in computer science in 2007 and his PhD in 2010, both from the University of Lübeck with highest distinction. For his PHD on the tomographic imaging method Magnetic Particle Imaging (MPI) he was awarded with the Klee award from the DGBMT (VDE) in 2011. From 2010 until 2011 he led the MAPIT project at the University of Lübeck and published the first scientific book on MPI. In 2011 he joined Bruker Biospin to work on the first commercially available MPI system. From 2012 until 2014 he worked at Thorlabs in the field of Optical Coherence Tomography (OCT) as a software developer. In 2014 he has been appointed as Professor for experimental Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology.

Journal Publications

[192095]
Title: Natural Frequency Dependence of Magneto-Mechanical Resonators on Magnet Distance.
Written by: J. Faltinath, F. Mohn, F. Foerger, M. Möddel, and T. Knopp
in: <em>IEEE Sensors Journal</em>. (2025).
Volume: <strong>25</strong>. Number: (20),
on pages: 38073-38081
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: https://doi.org/10.1109/JSEN.2025.3600007
URL: https://ieeexplore.ieee.org/document/11139087
ARXIVID:
PMID:

[www]

Note: article, openaccess, mmr

Abstract: The precise derivation of physical quantities like temperature or pressure at arbitrary locations is useful in numerous contexts, e.g., medical procedures or industrial process engineering. The novel sensor technology of magneto-mechanical resonators (MMRs), based on the interaction of a rotor and stator permanent magnet, allows for the combined tracking of the sensor position and orientation while simultaneously sensing an external measurand. Hence, the quantity is coupled to the torsional oscillation frequency, e.g., by varying the magnet distance. In this article, we analyze the (deflection angle-independent) natural frequency dependence of MMR sensors on the rotor-stator distance and evaluate the performance of theoretical models. The three presented sensors incorporate magnets of spherical and/or cylindrical geometry and can be operated at adjustable frequencies within the range of 61.9–307.3 Hz. Our proposed method to obtain the natural frequency demonstrates notable robustness to variations in the initial deflection amplitudes and quality factors, resulting in statistical errors on the mean smaller than 0.05%. We find that the distance–frequency relationship is well-described by an adapted dipole model accounting for material and manufacturing uncertainties. Their combined effect can be compensated by an adjustment of a single parameter, which drives the median model deviation generally below 0.2%. Our depicted methods and results are important for the design and calibration process of new sensor types utilizing the MMR technique.