
| [180971] |
| Title: Development of long circulating magnetic particle imaging tracers: use of novel magnetic nanoparticles and entrapment into human erythrocytesDevelopment of long circulating magnetic particle imaging tracers: use of novel magnetic nanoparticles and entrapm. |
| Written by: A. Antonelli, P. Szwargulski, E. S. Scarpa, F. Thieben, C. Grüttner, G. Ambrosi, L. Guidi, P. Ludewig, T. Knopp and M. Magnani |
| in: <em>Nanomedicine</em>. April (2020). |
| Volume: <strong>15</strong>. Number: (8), |
| on pages: 739-753 |
| Chapter: |
| Editor: |
| Publisher: Future Medicine Ltd: |
| Series: |
| Address: |
| Edition: |
| ISBN: |
| how published: |
| Organization: |
| School: |
| Institution: |
| Type: |
| DOI: |
| URL: https://doi.org/10.2217/nnm-2019-0449 |
| ARXIVID: |
| PMID: |
Note: article
Abstract: Aim: Magnetic particle imaging (MPI) is highly promising for biomedical applications, but optimal tracers for MPI, namely superparamagnetic iron oxide-based contrast agents, are still lacking. Materials & methods: The encapsulation of commercially available nanoparticles, specifically synomag®-D and perimag®, into human red blood cells (RBCs) was performed by a hypotonic dialysis and isotonic resealing procedure. The amounts of superparamagnetic iron oxide incorporated into RBCs were determined by Fe quantification using nuclear magnetic resonance and magnetic particle spectroscopy. Results: Perimag-COOH nanoparticles were identified as the best nanomaterial for encapsulation in RBCs. Perimag-COOH-loaded RBCs proved to be viable cells showing a good magnetic particle spectroscopy performance, while the magnetic signal of synomag-D-COOH-loaded RBCs dropped sharply. Conclusion: Perimag-COOH-loaded RBCs could be a potential tool for MPI diagnostic applications.