Prof. Dr.-Ing. Tobias Knopp

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 209
22529 Hamburg
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 56794
Fax: 040 / 7410 45811
E-Mail: t.knopp(at)uke.de
E-Mail: tobias.knopp(at)tuhh.de
ORCID: https://orcid.org/0000-0002-1589-8517

Roles

  • Head of the Institute for Biomedical Imaging
  • Editor-in-chief of the International Journal on Magnetic Particle Imaging (IJMPI)

Consulting Hours

  • On appointment

Research Interests

  • Tomographic Imaging
  • Image Reconstruction
  • Signal- and Image Processing
  • Magnetic Particle Imaging

Curriculum Vitae

Tobias Knopp received his Diplom degree in computer science in 2007 and his PhD in 2010, both from the University of Lübeck with highest distinction. For his PHD on the tomographic imaging method Magnetic Particle Imaging (MPI) he was awarded with the Klee award from the DGBMT (VDE) in 2011. From 2010 until 2011 he led the MAPIT project at the University of Lübeck and published the first scientific book on MPI. In 2011 he joined Bruker Biospin to work on the first commercially available MPI system. From 2012 until 2014 he worked at Thorlabs in the field of Optical Coherence Tomography (OCT) as a software developer. In 2014 he has been appointed as Professor for experimental Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology.

Journal Publications

[192056]
Title: Wireless and passive pressure detection using magneto-mechanical resonances in process engineering.
Written by: T. Merbach, F. Kexel, J. Faltinath, M. Möddel, M. Schlüter, T. Knopp, F. Mohn
in: <em>Measurement Science and Technology</em>. aug (2025).
Volume: <strong>36</strong>. Number: (8),
on pages: 085109
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1088/1361-6501/adf2c8
URL: https://dx.doi.org/10.1088/1361-6501/adf2c8
ARXIVID:
PMID:

[www]

Note: article, mmr

Abstract: A custom-developed magneto-mechanical resonator (MMR) for wireless pressure measurement is investigated for potential applications in process engineering. The MMR sensor utilises changes in the resonance frequency caused by pressure on a flexible 3D printed membrane. The thickness of the printed membrane plays a crucial role in determining the performance and sensitivity of MMRs and can be tailored to meet the requirements of specific applications. The study includes static and dynamic measurements to determine the pressure sensitivity and temporal resolution of the sensor. The results show a minimum sensitivity of and are in agreement with theoretical calculations and measurements. The maximum sensor readout frequency is 2 Hz in this study. Additionally, the temperature dependence of the sensor is investigated, revealing a significant dependence of the resonance frequency on temperature. The developed MMR offers a promising and versatile method for precise pressure measurements in process engineering environments.