Prof. Dr.-Ing. Tobias Knopp

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 209
22529 Hamburg
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 56794
Fax: 040 / 7410 45811
E-Mail: t.knopp(at)uke.de
E-Mail: tobias.knopp(at)tuhh.de

 

Roles

  • Head of the Institute for Biomedical Imaging
  • Editor-in-chief of the International Journal on Magnetic Particle Imaging (IJMPI)

Consulting Hours

  • On appointment

Research Interests

  • Tomographic Imaging
  • Image Reconstruction
  • Signal- and Image Processing
  • Magnetic Particle Imaging

Curriculum Vitae

Tobias Knopp received his Diplom degree in computer science in 2007 and his PhD in 2010, both from the University of Lübeck with highest distinction. For his PHD on the tomographic imaging method Magnetic Particle Imaging (MPI) he was awarded with the Klee award from the DGBMT (VDE) in 2011. From 2010 until 2011 he led the MAPIT project at the University of Lübeck and published the first scientific book on MPI. In 2011 he joined Bruker Biospin to work on the first commercially available MPI system. From 2012 until 2014 he worked at Thorlabs in the field of Optical Coherence Tomography (OCT) as a software developer. In 2014 he has been appointed as Professor for experimental Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology.

Publications

[169360]
Title: First Dedicated Balloon Catheter for Magnetic Particle Imaging.
Written by: M. Ahlborg, T. Friedrich, T. Göttsche, V. Scheitenberger, R. Linemann, M. Wattenberg, A. T. Buessen, T. Knopp, P. Szwargulski, M. G. Kaul, J. Salamon, T. M. Buzug, J. Barkhausen, F. Wegner
in: <em>IEEE Transactions on Medical Imaging</em>. Jun (2022).
Volume: Number:
on pages:
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1109/TMI.2022.3183948
URL: https://ieeexplore.ieee.org/document/9797737
ARXIVID:
PMID: 35709119

[www] [pmid]

Note: article

Abstract: Vascular interventions are a promising application of Magnetic Particle Imaging enabling a high spatial and temporal resolution without using ionizing radiation. The possibility to visualize the vessels as well as the devices, especially at the same time using multi-contrast approaches, enables a higher accuracy for diagnosis and treatment of vascular diseases. Different techniques to make devices MPI visible have been introduced so far, such as varnish markings or filling of balloons. However, all approaches include challenges for in vivo applications, such as the stability of the varnishing or the visibility of tracer filled balloons in deflated state. In this contribution, we present for the first time a balloon catheter that is molded from a granulate incorporating nanoparticles and can be visualized sufficiently in MPI. Computed tomography is used to show the homogeneous distribution of particles within the material. Safety measurements confirm that the incorporation of nanoparticles has no negative effect on the balloon. A dynamic experiment is performed to show that the inflation as well as deflation of the balloon can be imaged with MPI.