Prof. Dr.-Ing. Tobias Knopp

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 209
22529 Hamburg
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 56794
Fax: 040 / 7410 45811
E-Mail: t.knopp(at)uke.de
E-Mail: tobias.knopp(at)tuhh.de

 

Roles

  • Head of the Institute for Biomedical Imaging
  • Editor-in-chief of the International Journal on Magnetic Particle Imaging (IJMPI)

Consulting Hours

  • On appointment

Research Interests

  • Tomographic Imaging
  • Image Reconstruction
  • Signal- and Image Processing
  • Magnetic Particle Imaging

Curriculum Vitae

Tobias Knopp received his Diplom degree in computer science in 2007 and his PhD in 2010, both from the University of Lübeck with highest distinction. For his PHD on the tomographic imaging method Magnetic Particle Imaging (MPI) he was awarded with the Klee award from the DGBMT (VDE) in 2011. From 2010 until 2011 he led the MAPIT project at the University of Lübeck and published the first scientific book on MPI. In 2011 he joined Bruker Biospin to work on the first commercially available MPI system. From 2012 until 2014 he worked at Thorlabs in the field of Optical Coherence Tomography (OCT) as a software developer. In 2014 he has been appointed as Professor for experimental Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology.

Publications

[164760]
Title: MPI tracer interactions and their effect on signal stability.
Written by: L. Moor, S. Scheibler, L. Gerken, K. Scheffler, F. Thieben, T. Knopp, I. Herrmann, and F. Starsich
in: <em>International Journal on Magnetic Particle Imaging</em>. (2022).
Volume: <strong>8</strong>. Number: (1),
on pages: 1-3
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.18416/IJMPI.2022.2203056
URL: https://doi.org/10.18416/IJMPI.2022.2203056
ARXIVID:
PMID:

[www]

Note: inproceedings

Abstract: Nanoparticles tend to agglomerate following their in vivo or in vitro application. This leads to particle interaction and, for magnetic particle imaging (MPI) tracers, to magnetic coupling phenomena. Here, we investigate these effects and their influence on magnetic particle spectroscopy (MPS) and MPI signal stability. Highly magnetic flame-made Zn-ferrites with controlled interparticle distance are suggested as a stable MPI tracer system. Due to their pre-aggregated morphology, additional agglomeration does not substantially alter their magnetic response. This is in strong contrast to frequently investigated polymer-coated iron oxide nanoparticles, which show a massive MPS signal loss in a biologically relevant dispersion medium compared to water. This effect is also shown during MPI and renders these tracers inapplicable to further applications. Our flame-made Zn-ferrites, on the other hand, show sufficient signal stability, which allows their detailed quantification via MPI.