Prof. Dr.-Ing. Tobias Knopp

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 209
22529 Hamburg
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 56794
Fax: 040 / 7410 45811
E-Mail: t.knopp(at)uke.de
E-Mail: tobias.knopp(at)tuhh.de
ORCID: https://orcid.org/0000-0002-1589-8517

 

Roles

  • Head of the Institute for Biomedical Imaging
  • Editor-in-chief of the International Journal on Magnetic Particle Imaging (IJMPI)

Consulting Hours

  • On appointment

Research Interests

  • Tomographic Imaging
  • Image Reconstruction
  • Signal- and Image Processing
  • Magnetic Particle Imaging

Curriculum Vitae

Tobias Knopp received his Diplom degree in computer science in 2007 and his PhD in 2010, both from the University of Lübeck with highest distinction. For his PHD on the tomographic imaging method Magnetic Particle Imaging (MPI) he was awarded with the Klee award from the DGBMT (VDE) in 2011. From 2010 until 2011 he led the MAPIT project at the University of Lübeck and published the first scientific book on MPI. In 2011 he joined Bruker Biospin to work on the first commercially available MPI system. From 2012 until 2014 he worked at Thorlabs in the field of Optical Coherence Tomography (OCT) as a software developer. In 2014 he has been appointed as Professor for experimental Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology.

Publications

[120375]
Title: Multi-Patch Magnetic Particle Imaging of a Phantom with Periodic Motion. <em>9th International Workshop on Magnetic Particle Imaging (IWMPI 2019)</em>
Written by: N. Gdaniec, P. Szwargulski, M. Möddel, M. Boberg, and T. Knopp
in: (2019).
Volume: Number:
on pages: 27-28
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI:
URL:
ARXIVID:
PMID:

Note: inproceedings, artifact

Abstract: Magnetic Particle Imaging of large objects is typically performed with the help of focus fields or by object movement. Because the different positions are acquired sequentially, the spatial resolution worsens with the number of acquired positions. We propose an imaging sequence and data processing steps to reconstruct an image from an object experiencing periodic motion with reduced motion artifacts. Feasibility is shown for phantom data.