Niklas Hackelberg, M.Sc.

Fraunhofer-Einrichtung für Individualisierte und Zellbasierte Medizintechnik IMTE
Mönkhofer Weg 239a
23562 Lübeck
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

E-Mail: niklas.hackelberg(at)imte.fraunhofer.de
E-Mail: niklas.hackelberg(at)tuhh.de
ORCID: https://orcid.org/0000-0002-0976-9049

Research Interests

  • Magnetic Particle Imaging
  • Image reconstruction in MPI, MRI and CT
  • Parallel computing in Julia

Curriculum Vitae

Niklas Hackelberg is a PhD student in the group of Tobias Knopp for Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology. In addition, he works as a software engineer at the Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE in Lübeck. He studied Computer Science at the Technical University of Hamburg from 2014 to 2021, where he earned his Master's degree with a thesis on "Development of a Scalable and Real-Time Capable Data Acquisition System for Magnetic Particle Imaging."  

Journal Publications

[191175]
Title: RegularizedLeastSquares.jl: Modality Agnostic Julia Package for Solving Regularized Least Squares Problems.
Written by: N. Hackelberg, M. Grosser, A. Tsanda, F. Mohn, K. Scheffler, M. Möddel, and T. Knopp
in: <em>International Journal on Magnetic Particle Imaging</em>. (2024).
Volume: <strong>10</strong>. Number: (1 Suppl 1),
on pages: 1-4
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: https://doi.org/10.18416/IJMPI.2024.2403028
URL:
ARXIVID:
PMID:

Note: inproceedings, reconstruction

Abstract: Image reconstruction in Magnetic Particle Imaging (MPI) is an ill-posed linear inverse problem. A standard methodfor solving such a problem is the regularized least squares approach, which uses, a regularization function toreduce the impact of measurement noise in the reconstructed image by leveraging prior knowledge. Variousoptimization algorithms, including the Kazcmarz method or the Alternating Direction Method of Multipliers(ADMM), and regularization functions, such asl2or Fused Lasso priors have been employed. Therefore, thecreation and implementation of cutting-edge image reconstruction techniques necessitate a robust and adaptableoptimization framework. In this work, we present the open-source Julia package RegularizedLeastSquares.jl, whichprovides a large selection of common optimization algorithms and allows flexible inclusion of regularizationfunctions. These features enable the package to achieve state-of-the-art image reconstruction in MPI.

Conference Proceedings

[191175]
Title: RegularizedLeastSquares.jl: Modality Agnostic Julia Package for Solving Regularized Least Squares Problems.
Written by: N. Hackelberg, M. Grosser, A. Tsanda, F. Mohn, K. Scheffler, M. Möddel, and T. Knopp
in: <em>International Journal on Magnetic Particle Imaging</em>. (2024).
Volume: <strong>10</strong>. Number: (1 Suppl 1),
on pages: 1-4
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: https://doi.org/10.18416/IJMPI.2024.2403028
URL:
ARXIVID:
PMID:

Note: inproceedings, reconstruction

Abstract: Image reconstruction in Magnetic Particle Imaging (MPI) is an ill-posed linear inverse problem. A standard methodfor solving such a problem is the regularized least squares approach, which uses, a regularization function toreduce the impact of measurement noise in the reconstructed image by leveraging prior knowledge. Variousoptimization algorithms, including the Kazcmarz method or the Alternating Direction Method of Multipliers(ADMM), and regularization functions, such asl2or Fused Lasso priors have been employed. Therefore, thecreation and implementation of cutting-edge image reconstruction techniques necessitate a robust and adaptableoptimization framework. In this work, we present the open-source Julia package RegularizedLeastSquares.jl, whichprovides a large selection of common optimization algorithms and allows flexible inclusion of regularizationfunctions. These features enable the package to achieve state-of-the-art image reconstruction in MPI.