Niklas Hackelberg, M.Sc.

Fraunhofer-Einrichtung für Individualisierte und Zellbasierte Medizintechnik IMTE
Mönkhofer Weg 239a
23562 Lübeck
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

E-Mail: niklas.hackelberg(at)imte.fraunhofer.de
E-Mail: niklas.hackelberg(at)tuhh.de
ORCID: https://orcid.org/0000-0002-0976-9049

Research Interests

  • Magnetic Particle Imaging
  • Image reconstruction in MPI, MRI and CT
  • Parallel computing in Julia

Curriculum Vitae

Niklas Hackelberg is a PhD student in the group of Tobias Knopp for Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology. In addition, he works as a software engineer at the Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE in Lübeck. He studied Computer Science at the Technical University of Hamburg from 2014 to 2021, where he earned his Master's degree with a thesis on "Development of a Scalable and Real-Time Capable Data Acquisition System for Magnetic Particle Imaging."  

Journal Publications

[191956]
Title: GPU Accelerated Multi-Patch Reconstruction.
Written by: N. Hackelberg, M. Boberg, and T. Knopp
in: <em>International Journal on Magnetic Particle Imaging</em>. (2025).
Volume: <strong>11</strong>. Number: (1 Suppl 1),
on pages: 1-2
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: https://doi.org/10.18416/IJMPI.2025.2503048
URL: https://www.journal.iwmpi.org/index.php/iwmpi/article/view/816
ARXIVID:
PMID:

[www]

Note: inproceedings, reconstruction, multi-patch

Abstract: The multi-patch approach in magnetic particle imaging is used to capture large field of views. System-matrix-based image reconstruction for this approach often considers a joint system of equations to minimize artifacts. Due to the prohibitive size of this inverse problem, reconstructions rely on iterative algorithms that do not need to keep the entire system matrix in memory. This work shows a graphical processing unit accelerated implementation of a generalized multi-patch operator. The achieved runtime improvements allow for multi-patch reconstructions using different optimization algorithms, which in turn allow for a flexible choice of regularization terms.

Conference Proceedings

[191956]
Title: GPU Accelerated Multi-Patch Reconstruction.
Written by: N. Hackelberg, M. Boberg, and T. Knopp
in: <em>International Journal on Magnetic Particle Imaging</em>. (2025).
Volume: <strong>11</strong>. Number: (1 Suppl 1),
on pages: 1-2
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: https://doi.org/10.18416/IJMPI.2025.2503048
URL: https://www.journal.iwmpi.org/index.php/iwmpi/article/view/816
ARXIVID:
PMID:

[www]

Note: inproceedings, reconstruction, multi-patch

Abstract: The multi-patch approach in magnetic particle imaging is used to capture large field of views. System-matrix-based image reconstruction for this approach often considers a joint system of equations to minimize artifacts. Due to the prohibitive size of this inverse problem, reconstructions rely on iterative algorithms that do not need to keep the entire system matrix in memory. This work shows a graphical processing unit accelerated implementation of a generalized multi-patch operator. The achieved runtime improvements allow for multi-patch reconstructions using different optimization algorithms, which in turn allow for a flexible choice of regularization terms.