Dr. rer. nat. Martin Möddel (Hofmann)

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 212
22529 Hamburg
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 56309
E-Mail: m.hofmann(at)uke.de
E-Mail: martin.hofmann(at)tuhh.de
ORCID: https://orcid.org/0000-0002-4737-7863

Research Interests

My research on tomographic imaging is primarily focused on magnetic particle imaging. In this context, I am engaged in the study of a number of problems, including:

  • Image reconstruction
    • Multi-contrast imaging
    • Multi-patch imaging
    • Artifact reduction
  • Magnetic field generation and characterisation
  • Receive path calibration

Curriculum Vitae

Martin Möddel is a postdoctoral researcher in the group of Tobias Knopp for experimental Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology. He received his PhD in physics from the Universität Siegen in 2014 on the topic of characterizing quantum correlations: the genuine multiparticle negativity as entanglement monotone. Prior to his PhD, he studied physics at the Universität Leipzig between 2005 and 2011, where he received his Diplom On the costratified Hilbert space structure of a lattice gauge model with semi-simple gauge group.

Journal Publications

[183661]
Title: Saline bolus for negative contrast perfusion imaging in magnetic particle imaging.
Written by: F. Mohn, M. Exner, P. Szwargulski, M. Möddel, T. Knopp, and M. Graeser
in: <em>Physics in Medicine & Biology</em>. aug (2023).
Volume: <strong>68</strong>. Number: (17),
on pages: 5026
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN: 0031-9155, 1361-6560
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1088/1361-6560/ace309
URL:
ARXIVID:
PMID:

[BibTex]

Note: article, openaccess

Abstract: Magnetic Particle Imaging is capable to measure the spatial distribution of magnetic nanoparticles with high temporal resolution. As a quantitative tracer based imaging method, the signal is linear in the tracer concentration for any location that contains nanoparticles and zero in the surrounding tissue which does not provide any intrinsic signal. After tracer injection, the concentration over time (positive contrast) can be utilized to calculate dynamic diagnostic parameters like perfusion parameters in vessels and organs, which are an important tool in medical diagnosis. Every acquired perfusion image thus requires a new bolus of tracer with a sufficiently large iron dose to be visible above the background. We propose a method, where a bolus of physiological saline solution without any particles (negative contrast) displaces the remaining steady state concentration which in turn contributes to the image contrast. Perfusion parameters are calculated based on the time response of this negative bolus and compared to a positive bolus. Results from phantom experiments show that normalized signals from positive and negative boli are concurrent and deviations of calculated perfusion maps are low. Our method opens up the possibility to increase the total monitoring time of a future patient by utilizing a positive-negative contrast sequence, while minimizing the iron dose per acquired image.

[183661]
Title: Saline bolus for negative contrast perfusion imaging in magnetic particle imaging.
Written by: F. Mohn, M. Exner, P. Szwargulski, M. Möddel, T. Knopp, and M. Graeser
in: <em>Physics in Medicine & Biology</em>. aug (2023).
Volume: <strong>68</strong>. Number: (17),
on pages: 5026
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN: 0031-9155, 1361-6560
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1088/1361-6560/ace309
URL:
ARXIVID:
PMID:

[BibTex]

Note: article, openaccess

Abstract: Magnetic Particle Imaging is capable to measure the spatial distribution of magnetic nanoparticles with high temporal resolution. As a quantitative tracer based imaging method, the signal is linear in the tracer concentration for any location that contains nanoparticles and zero in the surrounding tissue which does not provide any intrinsic signal. After tracer injection, the concentration over time (positive contrast) can be utilized to calculate dynamic diagnostic parameters like perfusion parameters in vessels and organs, which are an important tool in medical diagnosis. Every acquired perfusion image thus requires a new bolus of tracer with a sufficiently large iron dose to be visible above the background. We propose a method, where a bolus of physiological saline solution without any particles (negative contrast) displaces the remaining steady state concentration which in turn contributes to the image contrast. Perfusion parameters are calculated based on the time response of this negative bolus and compared to a positive bolus. Results from phantom experiments show that normalized signals from positive and negative boli are concurrent and deviations of calculated perfusion maps are low. Our method opens up the possibility to increase the total monitoring time of a future patient by utilizing a positive-negative contrast sequence, while minimizing the iron dose per acquired image.

Conference Proceedings

[183661]
Title: Saline bolus for negative contrast perfusion imaging in magnetic particle imaging.
Written by: F. Mohn, M. Exner, P. Szwargulski, M. Möddel, T. Knopp, and M. Graeser
in: <em>Physics in Medicine & Biology</em>. aug (2023).
Volume: <strong>68</strong>. Number: (17),
on pages: 5026
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN: 0031-9155, 1361-6560
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1088/1361-6560/ace309
URL:
ARXIVID:
PMID:

[BibTex]

Note: article, openaccess

Abstract: Magnetic Particle Imaging is capable to measure the spatial distribution of magnetic nanoparticles with high temporal resolution. As a quantitative tracer based imaging method, the signal is linear in the tracer concentration for any location that contains nanoparticles and zero in the surrounding tissue which does not provide any intrinsic signal. After tracer injection, the concentration over time (positive contrast) can be utilized to calculate dynamic diagnostic parameters like perfusion parameters in vessels and organs, which are an important tool in medical diagnosis. Every acquired perfusion image thus requires a new bolus of tracer with a sufficiently large iron dose to be visible above the background. We propose a method, where a bolus of physiological saline solution without any particles (negative contrast) displaces the remaining steady state concentration which in turn contributes to the image contrast. Perfusion parameters are calculated based on the time response of this negative bolus and compared to a positive bolus. Results from phantom experiments show that normalized signals from positive and negative boli are concurrent and deviations of calculated perfusion maps are low. Our method opens up the possibility to increase the total monitoring time of a future patient by utilizing a positive-negative contrast sequence, while minimizing the iron dose per acquired image.

[183661]
Title: Saline bolus for negative contrast perfusion imaging in magnetic particle imaging.
Written by: F. Mohn, M. Exner, P. Szwargulski, M. Möddel, T. Knopp, and M. Graeser
in: <em>Physics in Medicine & Biology</em>. aug (2023).
Volume: <strong>68</strong>. Number: (17),
on pages: 5026
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN: 0031-9155, 1361-6560
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1088/1361-6560/ace309
URL:
ARXIVID:
PMID:

[BibTex]

Note: article, openaccess

Abstract: Magnetic Particle Imaging is capable to measure the spatial distribution of magnetic nanoparticles with high temporal resolution. As a quantitative tracer based imaging method, the signal is linear in the tracer concentration for any location that contains nanoparticles and zero in the surrounding tissue which does not provide any intrinsic signal. After tracer injection, the concentration over time (positive contrast) can be utilized to calculate dynamic diagnostic parameters like perfusion parameters in vessels and organs, which are an important tool in medical diagnosis. Every acquired perfusion image thus requires a new bolus of tracer with a sufficiently large iron dose to be visible above the background. We propose a method, where a bolus of physiological saline solution without any particles (negative contrast) displaces the remaining steady state concentration which in turn contributes to the image contrast. Perfusion parameters are calculated based on the time response of this negative bolus and compared to a positive bolus. Results from phantom experiments show that normalized signals from positive and negative boli are concurrent and deviations of calculated perfusion maps are low. Our method opens up the possibility to increase the total monitoring time of a future patient by utilizing a positive-negative contrast sequence, while minimizing the iron dose per acquired image.