Dr. rer. nat. Martin Möddel (Hofmann)

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 212
22529 Hamburg
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 56309
E-Mail: m.hofmann(at)uke.de
E-Mail: martin.hofmann(at)tuhh.de
ORCID: https://orcid.org/0000-0002-4737-7863

Research Interests

My research on tomographic imaging is primarily focused on magnetic particle imaging. In this context, I am engaged in the study of a number of problems, including:

  • Image reconstruction
    • Multi-contrast imaging
    • Multi-patch imaging
    • Artifact reduction
  • Magnetic field generation and characterisation
  • Receive path calibration

Curriculum Vitae

Martin Möddel is a postdoctoral researcher in the group of Tobias Knopp for experimental Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology. He received his PhD in physics from the Universität Siegen in 2014 on the topic of characterizing quantum correlations: the genuine multiparticle negativity as entanglement monotone. Prior to his PhD, he studied physics at the Universität Leipzig between 2005 and 2011, where he received his Diplom On the costratified Hilbert space structure of a lattice gauge model with semi-simple gauge group.

Journal Publications

[180978]
Title: Exploiting the Fourier Neural Operator for faster magnetization model evaluations based on the Fokker-Planck equation.
Written by: T. Knopp, H. Albers, M. Grosser, M. Möddel, and T. Kluth
in: <em>International Journal on Magnetic Particle Imaging</em>. (2023).
Volume: <strong>9</strong>. Number: (1),
on pages: 1-4
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.18416/IJMPI.2023.2303003
URL: https://journal.iwmpi.org/index.php/iwmpi/article/view/597
ARXIVID:
PMID:

[www] [BibTex]

Note: inproceedings

Abstract: Accurate modeling of the mean magnetic moment of an ensemble of magnetic particles in dynamic magnetic fields is a challenging task that requires sophisticated differential equation solvers. However, these methods are computationally costly and therefore not practical for long excitation sequences such as those of the Lissajous type. In this paper we propose to accelerate simulations by using a neural network mapping from the input parameter functions that are applied to the original particle simulator directly to the mean magnetic moment output function. The architecture of the neural network is based on the Fourier neural operator, which allows to train mappings between function spaces. Our results show that the particle simulation can be accelerated by a factor of about 200 while the relative error of the neural network simulator remains below 1.5%.

[180978]
Title: Exploiting the Fourier Neural Operator for faster magnetization model evaluations based on the Fokker-Planck equation.
Written by: T. Knopp, H. Albers, M. Grosser, M. Möddel, and T. Kluth
in: <em>International Journal on Magnetic Particle Imaging</em>. (2023).
Volume: <strong>9</strong>. Number: (1),
on pages: 1-4
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.18416/IJMPI.2023.2303003
URL: https://journal.iwmpi.org/index.php/iwmpi/article/view/597
ARXIVID:
PMID:

[www] [BibTex]

Note: inproceedings

Abstract: Accurate modeling of the mean magnetic moment of an ensemble of magnetic particles in dynamic magnetic fields is a challenging task that requires sophisticated differential equation solvers. However, these methods are computationally costly and therefore not practical for long excitation sequences such as those of the Lissajous type. In this paper we propose to accelerate simulations by using a neural network mapping from the input parameter functions that are applied to the original particle simulator directly to the mean magnetic moment output function. The architecture of the neural network is based on the Fourier neural operator, which allows to train mappings between function spaces. Our results show that the particle simulation can be accelerated by a factor of about 200 while the relative error of the neural network simulator remains below 1.5%.

Conference Proceedings

[180978]
Title: Exploiting the Fourier Neural Operator for faster magnetization model evaluations based on the Fokker-Planck equation.
Written by: T. Knopp, H. Albers, M. Grosser, M. Möddel, and T. Kluth
in: <em>International Journal on Magnetic Particle Imaging</em>. (2023).
Volume: <strong>9</strong>. Number: (1),
on pages: 1-4
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.18416/IJMPI.2023.2303003
URL: https://journal.iwmpi.org/index.php/iwmpi/article/view/597
ARXIVID:
PMID:

[www] [BibTex]

Note: inproceedings

Abstract: Accurate modeling of the mean magnetic moment of an ensemble of magnetic particles in dynamic magnetic fields is a challenging task that requires sophisticated differential equation solvers. However, these methods are computationally costly and therefore not practical for long excitation sequences such as those of the Lissajous type. In this paper we propose to accelerate simulations by using a neural network mapping from the input parameter functions that are applied to the original particle simulator directly to the mean magnetic moment output function. The architecture of the neural network is based on the Fourier neural operator, which allows to train mappings between function spaces. Our results show that the particle simulation can be accelerated by a factor of about 200 while the relative error of the neural network simulator remains below 1.5%.

[180978]
Title: Exploiting the Fourier Neural Operator for faster magnetization model evaluations based on the Fokker-Planck equation.
Written by: T. Knopp, H. Albers, M. Grosser, M. Möddel, and T. Kluth
in: <em>International Journal on Magnetic Particle Imaging</em>. (2023).
Volume: <strong>9</strong>. Number: (1),
on pages: 1-4
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.18416/IJMPI.2023.2303003
URL: https://journal.iwmpi.org/index.php/iwmpi/article/view/597
ARXIVID:
PMID:

[www] [BibTex]

Note: inproceedings

Abstract: Accurate modeling of the mean magnetic moment of an ensemble of magnetic particles in dynamic magnetic fields is a challenging task that requires sophisticated differential equation solvers. However, these methods are computationally costly and therefore not practical for long excitation sequences such as those of the Lissajous type. In this paper we propose to accelerate simulations by using a neural network mapping from the input parameter functions that are applied to the original particle simulator directly to the mean magnetic moment output function. The architecture of the neural network is based on the Fourier neural operator, which allows to train mappings between function spaces. Our results show that the particle simulation can be accelerated by a factor of about 200 while the relative error of the neural network simulator remains below 1.5%.