Dr. rer. nat. Martin Möddel (Hofmann)

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 212
22529 Hamburg
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 56309
E-Mail: martin.moeddel(at)tuhh.de
E-Mail: m.hofmann(at)uke.de
ORCID: https://orcid.org/0000-0002-4737-7863

Research Interests

My research on tomographic imaging is primarily focused on magnetic particle imaging. In this context, I am engaged in the study of a number of problems, including:

  • Image reconstruction
    • Multi-contrast imaging
    • Multi-patch imaging
    • Artifact reduction
  • Magnetic field generation and characterisation
  • Receive path calibration

Curriculum Vitae

Martin Möddel is a postdoctoral researcher in the group of Tobias Knopp for experimental Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology. He received his PhD in physics from the Universität Siegen in 2014 on the topic of characterizing quantum correlations: the genuine multiparticle negativity as entanglement monotone. Prior to his PhD, he studied physics at the Universität Leipzig between 2005 and 2011, where he received his Diplom On the costratified Hilbert space structure of a lattice gauge model with semi-simple gauge group.

Journal Publications

[164758]
Title: Empirical Study of Magnet Distance on Magneto-Mechanical Resonance Frequency.
Written by: T. Knopp, F. Mohn, F. Foerger, F. Thieben, N. Hackelberg, J. Faltinath, A. Tsanda, M. Boberg, and M. Möddel
in: <em>Current Directions in Biomedical Engineering</em>. 12 (2024).
Volume: <strong>10</strong>. Number: (4),
on pages: 377-380
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: http://dx.doi.org/10.1515/cdbme-2024-2092
URL: https://www.degruyterbrill.com/document/doi/10.1515/cdbme-2024-2092/html
ARXIVID:
PMID:

[www] [BibTex]

Note: inproceedings, mmr

Abstract: Determining the position and orientation of a medical instrument is essential for accurate procedures in endoscopy, surgery, and vascular interventions. Recently, a novel sensor based on torsional pendulum-like magneto-mechanical motion has been proposed. This sensor is passive, wireless and inductively coupled to a transmit-receive coil array. This setup allows the determination of all 6 degrees of freedom using the characteristic resonance of the sensor. Additional physical quantities such as temperature and pressure can be measured based on the frequency of the sensor, which mainly depends on the distance between the two involved permanent magnets. In this study, we analyze a sensor composed of two magnetic cylinders with variable magnet-to-magnet distance and a basic physical model based on a dipole assumption. Experimental analysis of the resonance frequency and comparison with the model values show both qualitative and quantitative agreement with an average relative error of only 0.8 %. This validates the implemented model and shows the suitability of our magnetic-mechanical resonator made from cylindrical permanent magnets for sensing applications.

[164758]
Title: Empirical Study of Magnet Distance on Magneto-Mechanical Resonance Frequency.
Written by: T. Knopp, F. Mohn, F. Foerger, F. Thieben, N. Hackelberg, J. Faltinath, A. Tsanda, M. Boberg, and M. Möddel
in: <em>Current Directions in Biomedical Engineering</em>. 12 (2024).
Volume: <strong>10</strong>. Number: (4),
on pages: 377-380
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: http://dx.doi.org/10.1515/cdbme-2024-2092
URL: https://www.degruyterbrill.com/document/doi/10.1515/cdbme-2024-2092/html
ARXIVID:
PMID:

[www] [BibTex]

Note: inproceedings, mmr

Abstract: Determining the position and orientation of a medical instrument is essential for accurate procedures in endoscopy, surgery, and vascular interventions. Recently, a novel sensor based on torsional pendulum-like magneto-mechanical motion has been proposed. This sensor is passive, wireless and inductively coupled to a transmit-receive coil array. This setup allows the determination of all 6 degrees of freedom using the characteristic resonance of the sensor. Additional physical quantities such as temperature and pressure can be measured based on the frequency of the sensor, which mainly depends on the distance between the two involved permanent magnets. In this study, we analyze a sensor composed of two magnetic cylinders with variable magnet-to-magnet distance and a basic physical model based on a dipole assumption. Experimental analysis of the resonance frequency and comparison with the model values show both qualitative and quantitative agreement with an average relative error of only 0.8 %. This validates the implemented model and shows the suitability of our magnetic-mechanical resonator made from cylindrical permanent magnets for sensing applications.

Conference Proceedings

[164758]
Title: Empirical Study of Magnet Distance on Magneto-Mechanical Resonance Frequency.
Written by: T. Knopp, F. Mohn, F. Foerger, F. Thieben, N. Hackelberg, J. Faltinath, A. Tsanda, M. Boberg, and M. Möddel
in: <em>Current Directions in Biomedical Engineering</em>. 12 (2024).
Volume: <strong>10</strong>. Number: (4),
on pages: 377-380
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: http://dx.doi.org/10.1515/cdbme-2024-2092
URL: https://www.degruyterbrill.com/document/doi/10.1515/cdbme-2024-2092/html
ARXIVID:
PMID:

[www] [BibTex]

Note: inproceedings, mmr

Abstract: Determining the position and orientation of a medical instrument is essential for accurate procedures in endoscopy, surgery, and vascular interventions. Recently, a novel sensor based on torsional pendulum-like magneto-mechanical motion has been proposed. This sensor is passive, wireless and inductively coupled to a transmit-receive coil array. This setup allows the determination of all 6 degrees of freedom using the characteristic resonance of the sensor. Additional physical quantities such as temperature and pressure can be measured based on the frequency of the sensor, which mainly depends on the distance between the two involved permanent magnets. In this study, we analyze a sensor composed of two magnetic cylinders with variable magnet-to-magnet distance and a basic physical model based on a dipole assumption. Experimental analysis of the resonance frequency and comparison with the model values show both qualitative and quantitative agreement with an average relative error of only 0.8 %. This validates the implemented model and shows the suitability of our magnetic-mechanical resonator made from cylindrical permanent magnets for sensing applications.

[164758]
Title: Empirical Study of Magnet Distance on Magneto-Mechanical Resonance Frequency.
Written by: T. Knopp, F. Mohn, F. Foerger, F. Thieben, N. Hackelberg, J. Faltinath, A. Tsanda, M. Boberg, and M. Möddel
in: <em>Current Directions in Biomedical Engineering</em>. 12 (2024).
Volume: <strong>10</strong>. Number: (4),
on pages: 377-380
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: http://dx.doi.org/10.1515/cdbme-2024-2092
URL: https://www.degruyterbrill.com/document/doi/10.1515/cdbme-2024-2092/html
ARXIVID:
PMID:

[www] [BibTex]

Note: inproceedings, mmr

Abstract: Determining the position and orientation of a medical instrument is essential for accurate procedures in endoscopy, surgery, and vascular interventions. Recently, a novel sensor based on torsional pendulum-like magneto-mechanical motion has been proposed. This sensor is passive, wireless and inductively coupled to a transmit-receive coil array. This setup allows the determination of all 6 degrees of freedom using the characteristic resonance of the sensor. Additional physical quantities such as temperature and pressure can be measured based on the frequency of the sensor, which mainly depends on the distance between the two involved permanent magnets. In this study, we analyze a sensor composed of two magnetic cylinders with variable magnet-to-magnet distance and a basic physical model based on a dipole assumption. Experimental analysis of the resonance frequency and comparison with the model values show both qualitative and quantitative agreement with an average relative error of only 0.8 %. This validates the implemented model and shows the suitability of our magnetic-mechanical resonator made from cylindrical permanent magnets for sensing applications.