
| [57080] | 
| Title: MPI as high temporal resolution imaging technique for in vivo bolus tracking of Ferucarbotran in mouse model. | 
| Written by: C. Jung, J. Salamon, M. Hofmann, M. G. Kaul, G. Adam, H. Ittrich and T. Knopp | 
| in: <em>Proc. SPIE</em>. (2016). | 
| Volume: <strong>9788</strong>. Number: | 
| on pages: 97880V-97880V-7 | 
| Chapter: | 
| Editor: | 
| Publisher: | 
| Series: | 
| Address: | 
| Edition: | 
| ISBN: | 
| how published: | 
| Organization: | 
| School: | 
| Institution: | 
| Type: | 
| DOI: 10.1117/12.2216660 | 
| URL: http://dx.doi.org/10.1117/12.2216660 | 
| ARXIVID: | 
| PMID: | 
Note: inproceedings
Abstract: Purpose: The goal of this study was to achieve a real time 3D visualisation of the murine cardiovascular system by intravenously injected superparamagnetic nanoparticles using Magnetic particle imaging (MPI). Material and Methods: MPI scans of FVB mice were performed using a 3D imaging sequence (1T/m gradient strength, 10mT drive-field strength). A dynamic scan with a temporal resolution of 21.5ms per 3D volume acquisition was performed. 50μl ferucarbotran (Resovist®, Bayer Healthcare AG) were injected into the tail vein after baseline MPI measurements. As MPI delivers no anatomic information, MRI scans at a 7T ClinScan (Bruker) were performed using a T2-weighted 2D TSE sequence. The reconstruction of the MPI data was performed on the MPI console (ParaVision 6.0/MPI, Bruker). Image fusion was done using additional image processing software (Imalytics, Philips). The dynamic information was extracted using custom software developed in the Julia programming environment. Results: The combined MRI-MPI measurements were carried out successfully. MPI data clearly demonstrated the passage of the SPIO tracer through the inferior vena cava, the heart and finally the liver. By co-registration with MRI the anatomical regions were identified. Due to the volume frame rate of about 46 volumes per second a signal modulation with the frequency of the heart beat was detectable and a heart beat of 520 beats per minute (bpm) has been assumed. Moreover, the blood flow velocity of approximately 5cm/s in the vena cava has been estimated. Conclusions: The high temporal resolution of MPI allows real-time imaging and bolus tracking of intravenous injected nanoparticles and offers a real time tool to assess blood flow velocity.
| [57080] | 
| Title: MPI as high temporal resolution imaging technique for in vivo bolus tracking of Ferucarbotran in mouse model. | 
| Written by: C. Jung, J. Salamon, M. Hofmann, M. G. Kaul, G. Adam, H. Ittrich and T. Knopp | 
| in: <em>Proc. SPIE</em>. (2016). | 
| Volume: <strong>9788</strong>. Number: | 
| on pages: 97880V-97880V-7 | 
| Chapter: | 
| Editor: | 
| Publisher: | 
| Series: | 
| Address: | 
| Edition: | 
| ISBN: | 
| how published: | 
| Organization: | 
| School: | 
| Institution: | 
| Type: | 
| DOI: 10.1117/12.2216660 | 
| URL: http://dx.doi.org/10.1117/12.2216660 | 
| ARXIVID: | 
| PMID: | 
Note: inproceedings
Abstract: Purpose: The goal of this study was to achieve a real time 3D visualisation of the murine cardiovascular system by intravenously injected superparamagnetic nanoparticles using Magnetic particle imaging (MPI). Material and Methods: MPI scans of FVB mice were performed using a 3D imaging sequence (1T/m gradient strength, 10mT drive-field strength). A dynamic scan with a temporal resolution of 21.5ms per 3D volume acquisition was performed. 50μl ferucarbotran (Resovist®, Bayer Healthcare AG) were injected into the tail vein after baseline MPI measurements. As MPI delivers no anatomic information, MRI scans at a 7T ClinScan (Bruker) were performed using a T2-weighted 2D TSE sequence. The reconstruction of the MPI data was performed on the MPI console (ParaVision 6.0/MPI, Bruker). Image fusion was done using additional image processing software (Imalytics, Philips). The dynamic information was extracted using custom software developed in the Julia programming environment. Results: The combined MRI-MPI measurements were carried out successfully. MPI data clearly demonstrated the passage of the SPIO tracer through the inferior vena cava, the heart and finally the liver. By co-registration with MRI the anatomical regions were identified. Due to the volume frame rate of about 46 volumes per second a signal modulation with the frequency of the heart beat was detectable and a heart beat of 520 beats per minute (bpm) has been assumed. Moreover, the blood flow velocity of approximately 5cm/s in the vena cava has been estimated. Conclusions: The high temporal resolution of MPI allows real-time imaging and bolus tracking of intravenous injected nanoparticles and offers a real time tool to assess blood flow velocity.
| [57080] | 
| Title: MPI as high temporal resolution imaging technique for in vivo bolus tracking of Ferucarbotran in mouse model. | 
| Written by: C. Jung, J. Salamon, M. Hofmann, M. G. Kaul, G. Adam, H. Ittrich and T. Knopp | 
| in: <em>Proc. SPIE</em>. (2016). | 
| Volume: <strong>9788</strong>. Number: | 
| on pages: 97880V-97880V-7 | 
| Chapter: | 
| Editor: | 
| Publisher: | 
| Series: | 
| Address: | 
| Edition: | 
| ISBN: | 
| how published: | 
| Organization: | 
| School: | 
| Institution: | 
| Type: | 
| DOI: 10.1117/12.2216660 | 
| URL: http://dx.doi.org/10.1117/12.2216660 | 
| ARXIVID: | 
| PMID: | 
Note: inproceedings
Abstract: Purpose: The goal of this study was to achieve a real time 3D visualisation of the murine cardiovascular system by intravenously injected superparamagnetic nanoparticles using Magnetic particle imaging (MPI). Material and Methods: MPI scans of FVB mice were performed using a 3D imaging sequence (1T/m gradient strength, 10mT drive-field strength). A dynamic scan with a temporal resolution of 21.5ms per 3D volume acquisition was performed. 50μl ferucarbotran (Resovist®, Bayer Healthcare AG) were injected into the tail vein after baseline MPI measurements. As MPI delivers no anatomic information, MRI scans at a 7T ClinScan (Bruker) were performed using a T2-weighted 2D TSE sequence. The reconstruction of the MPI data was performed on the MPI console (ParaVision 6.0/MPI, Bruker). Image fusion was done using additional image processing software (Imalytics, Philips). The dynamic information was extracted using custom software developed in the Julia programming environment. Results: The combined MRI-MPI measurements were carried out successfully. MPI data clearly demonstrated the passage of the SPIO tracer through the inferior vena cava, the heart and finally the liver. By co-registration with MRI the anatomical regions were identified. Due to the volume frame rate of about 46 volumes per second a signal modulation with the frequency of the heart beat was detectable and a heart beat of 520 beats per minute (bpm) has been assumed. Moreover, the blood flow velocity of approximately 5cm/s in the vena cava has been estimated. Conclusions: The high temporal resolution of MPI allows real-time imaging and bolus tracking of intravenous injected nanoparticles and offers a real time tool to assess blood flow velocity.
| [57080] | 
| Title: MPI as high temporal resolution imaging technique for in vivo bolus tracking of Ferucarbotran in mouse model. | 
| Written by: C. Jung, J. Salamon, M. Hofmann, M. G. Kaul, G. Adam, H. Ittrich and T. Knopp | 
| in: <em>Proc. SPIE</em>. (2016). | 
| Volume: <strong>9788</strong>. Number: | 
| on pages: 97880V-97880V-7 | 
| Chapter: | 
| Editor: | 
| Publisher: | 
| Series: | 
| Address: | 
| Edition: | 
| ISBN: | 
| how published: | 
| Organization: | 
| School: | 
| Institution: | 
| Type: | 
| DOI: 10.1117/12.2216660 | 
| URL: http://dx.doi.org/10.1117/12.2216660 | 
| ARXIVID: | 
| PMID: | 
Note: inproceedings
Abstract: Purpose: The goal of this study was to achieve a real time 3D visualisation of the murine cardiovascular system by intravenously injected superparamagnetic nanoparticles using Magnetic particle imaging (MPI). Material and Methods: MPI scans of FVB mice were performed using a 3D imaging sequence (1T/m gradient strength, 10mT drive-field strength). A dynamic scan with a temporal resolution of 21.5ms per 3D volume acquisition was performed. 50μl ferucarbotran (Resovist®, Bayer Healthcare AG) were injected into the tail vein after baseline MPI measurements. As MPI delivers no anatomic information, MRI scans at a 7T ClinScan (Bruker) were performed using a T2-weighted 2D TSE sequence. The reconstruction of the MPI data was performed on the MPI console (ParaVision 6.0/MPI, Bruker). Image fusion was done using additional image processing software (Imalytics, Philips). The dynamic information was extracted using custom software developed in the Julia programming environment. Results: The combined MRI-MPI measurements were carried out successfully. MPI data clearly demonstrated the passage of the SPIO tracer through the inferior vena cava, the heart and finally the liver. By co-registration with MRI the anatomical regions were identified. Due to the volume frame rate of about 46 volumes per second a signal modulation with the frequency of the heart beat was detectable and a heart beat of 520 beats per minute (bpm) has been assumed. Moreover, the blood flow velocity of approximately 5cm/s in the vena cava has been estimated. Conclusions: The high temporal resolution of MPI allows real-time imaging and bolus tracking of intravenous injected nanoparticles and offers a real time tool to assess blood flow velocity.